

首都圈防沙治沙水土资源空间优化配置研究 ——以大兴、怀来、张北为例

吴绍洪¹, 姚华荣^{1,2}, 杨勤业¹

(1. 中国科学院 地理科学与资源研究所, 北京 100101; 2. 西安交通大学, 陕西 西安 710049)

摘要: 首都圈是近年来北京沙尘暴天气日益严重的重要沙尘源区之一。研究区中大兴区代表的是华北平原北缘落叶阔叶林灌草丛典型区;怀来县代表的是桑干河、洋河盆地灌木草原典型区;张北县代表的是坝上高原西部干草原典型区。论文通过了解水土资源利用的变化情况, 分析水土资源利用现状和存在问题, 利用中国资源环境遥感数据库中的土地利用现状、中国 1:1 000 000 土地资源图等数据, 以水资源为最重要的限制因素, 通过灰色线性规划模型, 以防沙治沙和发展经济、实现区域可持续发展为目标, 进行水土资源优化配置, 结合不同区域水土资源利用的突出问题, 将水土资源优化配置方案落实到空间, 建立区域水土资源比较合理、有效利用的方案。大兴的重要措施是平原旱耕地转变为中覆盖度草地, 怀来是陡坡地退耕, 张北是提高草地的覆盖度。

关 键 词: 防沙治沙 水土资源 优化配置 空间方案

中图分类号: P425.5⁵ ; F205 文献标识码: A 文章编号: 1000-3037(2003)06-0712-08

本研究的首都圈指北京及其周边地区, 包括北京及其以北的河北、内蒙古的部分地区, 共 47 个县(市)。据研究^[1], 北京周边地区是近年来北京沙尘暴天气日益严重的重要沙尘源区之一, 受到社会各界的高度关注。自然条件的变化与不合理的开发与利用, 如滥垦过牧、广种薄收, 山区森林植被破坏、陡坡开垦等, 造成草场退化严重、土地沙化愈演愈烈, 植被稀疏、土壤侵蚀强烈, 平原地区地下水位大幅度下降, 水体污染严重, 生态环境日趋恶化。近年来华北地区历次沙尘天气与内蒙古中西部和河北西北部近 $25 \times 10^4 \text{ km}^2$ 的沙化发展区有比较密切的关系^[2]。水土资源优化配置旨在通过了解水土资源利用的变化情况, 分析水土资源利用现状和存在问题, 进而以防沙治沙和发展经济、实现区域可持续发展为目标, 并将水土资源优化配置方案落实到空间, 使区域水土资源得到比较合理、有效的利用, 这是水土资源的合理开发利用与实施可持续发展战略的基础。

1 不同生态区特征与水土资源问题

根据首都圈生态地理特征, 地处华北的大兴是华北平原北缘落叶阔叶林灌草丛区的代表, 范围包括北京市区、顺义县、平谷县、通州区, 河北省的三河县、大厂县和香河县; 地处内蒙古高原与河北平原交接带的怀来县, 是桑干河、洋河盆地灌木草原区的代表, 范围包括京北怀柔、延庆、昌平和河北万全、宣化、怀安、涿鹿、阳原、蔚县一带; 地处内蒙古高原南缘坝上地区的张北县, 是坝上高原西部干草原区的代表, 范围还包括沽源和尚义两县。

收稿日期: 2003-05-07; 修订日期 2003-07-29。

基金项目: 国家科技部项目(FS2000-007-2) 资助。

第一作者简介: 吴绍洪(1961~), 男, 广东人, 博士, 研究员。E-mail: wush@igsnrr.ac.cn

1.1 数据来源

土地利用现状数据、地形资料采用刘纪远等^[3]的中国资源环境遥感数据库中的土地利用现状数据;粮食总产量、复种指数等经济指标采用县农村经济统计资料(1995~1999)^[4];土地适宜性评价资料采用石玉林主编《中华人民共和国1:100万土地资源图》^[5];气候数据来自国家气象局;水量资料来自各区县的水利部门。

1.2 水土资源特征与社会经济基础

大兴区年平均降水568.9mm,60%以上降水集中在6~8月;境内有14条河流,总长度298.73km,境内流域面积1 030.6km²,永定河、凉水河、新凤河、凤河、天龙河等呈扇状自西北向东南流布全境,除永定河外,均为排灌两用河道;多年平均地表径流总量 $1.24 \times 10^8 \text{m}^3$,年利用 $10.974 \times 10^6 \text{m}^3$,利用率为8.85%,最大排泄能力为 $430 \text{m}^3/\text{s}$ 。怀来县干旱少雨,多年平均降雨量约为400mm,集中在7、8、9三个月,全县自产地表径流多年平均值为 $1.15 \times 10^8 \text{m}^3$,地下水资源总量 $1.25 \times 10^8 \text{m}^3$,过境水资源量约 $8.16 \times 10^8 \text{m}^3$ ^①。张北县年均降雨量397.6mm,全县年总降水量 $16.63 \times 10^8 \text{m}^3$,年地表水总量 $89.413 \times 10^6 \text{m}^3$,地下水年补给量 $275.5 \times 10^6 \text{m}^3$,地下水可开采量 $178.4 \times 10^6 \text{m}^3$ ^②。社会经济状况见表1。

表1 社会经济状况(2000年)

Table 1 Data of social economic situation(2000)

地区		大兴	怀来	张北
人口	总数(10 ⁴ 人)	63.6	32.3	29.8
	密度(人/km ²)	609	180	71
GDP(当年价)	10 ⁴ 元	627 951	220 770	89 207
农业(当年价)	总产值(10 ⁴ 元)	182 993	59 043	61 506
其中:种植	总产值(10 ⁴ 元)	107 317	41 046	29 088
	占农业(%)	58.65	75.26	48.24
林业	总产值(10 ⁴ 元)	2 795.3	2 635	1 166
	占农业(%)	1.53	2.94	2.34
牧业	总产值(10 ⁴ 元)	70 677	13 443	29 581
	占农业(%)	38.62	18.27	46.41
渔业	总产值(10 ⁴ 元)	2 203.7	1 919	1 671
	占农业(%)	1.20	3.52	3.01

1.3 土地利用特点与存在问题

土地利用结构见表2。水土资源利用主要存在3个方面的问题。

表2 不同区域土地利用结构(%)

Table 2 Land use structure in different regions

区域	耕地	林地	草地	水域	建设用地	未利用地
大兴	42.4	36.3	11.9	5.8	3.2	0.3
怀来	70.6	6.7	0.01	3.9	18.8	0.01
张北	53.6	17.1	22.5	3.6	2.7	0.5

注:资料来源于参考文献[3]。

1.3.1 用地结构上的不合理

根据土地利用现状与土地适宜性的比较表明,耕地所占比重偏大,高覆盖度草地所占比重太小,而中、低覆盖度草地比重偏大。种植业用地内部结构不尽合理,由于农业可用水资源紧缺,应首先考虑将耕地用于种植需水量相对较小的粮食作物,使得水资源的边际效应得到最充分的发挥。

① 河北省怀来县农业区划办公室.怀来县综合农业区划.1985.

② 张北县农业区划委员会.张北县综合农业区划报告.1981.

1.3.2 用地布局不尽合理

大兴区近 1/3 的耕地分布在质量较差的三等宜农地或三等宜农二等宜林二等宜牧地上 ;用地布局不尽合理 ,部分质量好的宜农地被以居民点与建设用地和其它园地为主的用地类型占用。怀来县很大数量的旱地分布在不宜耕作的丘陵陡坡地上 ;从土地的适宜性上来说 ,园地可以分布在太阳辐射和水分条件较好的丘陵、低山地带 ,而不应占用本来就很有限的宜农地。张北大量耕地分布在宜牧(草)的土地上 ,耕地中 82 091.2hm² 为一、二等宜牧地 ,占耕地总面积的 36.09% ;108 901.2hm² 为三等宜农一等宜牧地 ,占耕地总面积的 47.87% ;而一、二等宜农地仅 20 439.8hm² ,占耕地总面积的 8.99%。

1.3.3 水资源难于满足土地利用现状需求

参照其它地区已有研究成果^[6,7] ,结合各区实际自然条件 ,在现状水资源利用条件下 ,单

表 3 不同区域主要用地需水标准及总量 (m³/hm²)

Table 3 Water requirement criteria and total amount of land for different regions

地区	大兴	怀来	张北
粮食作物	4 200	4 500	4 800
其它作物	4 600	6 000	5 000
有林地	4 500	4 500	5 000
疏林地	2 000	2 000	2 000
其它林地	4 800	3 500	3 600
高覆盖度草地	3 000	3 000	3 200
中覆盖度草地	2 000	2 100	2 300
低覆盖度草地	1 500	1 500	1 600
需水总量 (10 ⁸ m ³)	5.5	6.8	16

位面积用水量按表 3 标准计算 ,各区水资源有较大的短缺。由于水土资源的不合理利用 ,加之在干旱少雨、多风的春季地表容易掀起扬沙 ,这些区域处于北京的周边 ,对北京的生态环境质量产生影响 ,因而需对其水土资源配置问题进行深入的研究。

2 水土资源优化配置方案

2.1 水土资源优化配置原则

根据怀来县的生态地理特征及首都圈典型区域防沙治沙的要求 ,即以控制沙源、促使区域生态环境的根本好转为目标 ,寻求区域水土资源的最佳利用效益 ,为首都的防沙治沙和生态环境安全提供必要保证。因此 在水土资源优化配置中遵循的主要原则是 ①生态先行 ,即在水土资源的优化配置中首先考虑生态环境效益 ,并通过林、草地的最低限量来实现 ;②统筹兼顾 ,在满足一定生态要求的基础上追求最佳的社会、经济效益 ,是保持已取得生态效益的基本保障 ,因此 ,要在保证生态效益的基础上 ,坚持社会经济效益最大的原则 ;③因地制宜 ,根据不同土地资源类型状况及水资源供给条件 ,确定水、土资源的最佳利用方法 ,使“地尽其力 ,水尽其用”。

2.2 水土资源优化配置方法

水土资源优化配置要求一些变量在一定的区间变化 ,组成不同组合的方案 ,并按照一定的目标筛选优化方案^[8]。灰色线性规划模型满足这一要求。其形式如下 :

目标函数 $F(x)=C \cdot X = \max$

约束条件 : $\otimes(A) \cdot X \leq (or) \geq B, X \geq 0$

$$\text{式中, } \otimes(A) = \begin{bmatrix} \otimes_{11} & \otimes_{12} & \dots & \otimes_{1m} \\ \otimes_{21} & \otimes_{22} & \dots & \otimes_{2m} \\ \vdots & \vdots & & \vdots \\ \otimes_{n1} & \otimes_{n2} & \dots & \otimes_{nm} \end{bmatrix} = \begin{bmatrix} \otimes(a_{11}) & \otimes(a_{12}) & \dots & \otimes(a_{1m}) \\ \otimes(a_{21}) & \otimes(a_{22}) & \dots & \otimes(a_{23}) \\ \vdots & \vdots & & \vdots \\ \otimes(a_{n1}) & \otimes(a_{n2}) & \dots & \otimes(a_{nm}) \end{bmatrix}$$

$\otimes_{ij} \in (a_{ij}, \bar{a}_{ij})$, (a_{ij}, \bar{a}_{ij}) 分别为 \otimes_{ij} 的下限和上限白化值 , \otimes_{ij} 可取其间任意值 ,每取一组白化值 对应一组约束方程 $X=[x_1 \ x_2 \ \dots \ x_n]^T$,为决策变量矩阵 $B=[b_1 \ b_2 \ \dots \ b_n]$,为约束值矩阵 $C=[c_1 \ c_2 \ \dots \ c_n]$,为目标函数系数矩阵。

2.3 水土资源优化配置方案

根据研究目标与区域特征筛选出决策变量列于表 4。

表 4 不同生态类型区的决策变量

Table 4 Decision variables for different types of ecological regions

大兴区	怀来县	张北县
X_1 : 粮食作物播种面积	X_1 : 粮食作物播种面积	X_1 : 粮食作物播种面积
X_2 : 其它作物播种面积	X_2 : 其它作物播种面积	X_2 : 其它作物播种面积
X_3 : 有林地面积	X_3 : 有林地面积	X_3 : 有林地面积
X_4 : 疏林地面积	X_4 : 疏林地面积	X_4 : 疏林地面积
X_5 : 其它林地面积	X_5 : 其它林地面积	X_5 : 其它林地面积
X_6 : 高覆盖度草地面积	X_7 : 低覆盖度草地面积	X_7 : 低覆盖度草地面积
X_7 : 中覆盖度草地面积	X_8 : 中覆盖度草地面积	X_8 : 中覆盖度草地面积
	X_9 : 高覆盖度草地面积	X_9 : 高覆盖度草地面积

各参变量确定如下。①耕地坡度数据:采用地形资料,利用 Arc Info 软件,生成坡度图;再与土地利用现状图进行叠加,生成耕地坡度图;由此即可统计出不同坡度范围的耕地面积。②粮食总产量:采用 1995~1999 年粮食总产量的平均值。③粮食单产:1995~1999 年粮食总产量的最高值和最低值分别除以土地利用现状中的粮食作物播种面积,得到粮食单产的上、下限值。④各土地利用类型面积约束值:土地利用现状图与经过数字化并配准后的土地资源图叠加获得。⑤农业可用水资源量:区域水资源总量乘以不同开发利用系数。⑥复种指数:粮食作物和其他作物略有差别,均分别采用 1995~1999 年的最高值和最低值,作为复种指数的上、下限值。⑦不同用地类型单位面积需水量:参照其它地区已有研究成果,结合本区条件进行矫正获得。⑧各类用地单位面积产值:各类用地单产量分别乘以其产出物单价。

在以上基础上,根据各区域的宜农地面积、粮食总产量、粮食作物播种面积占总播种面积比例、有林地面积、有林地占林地总面积比例、灌木林地面积、疏林地面积、其它林地面积、林地总面积、低覆盖度草地面积、中覆盖度草地面积、高覆盖度草地面积、草地总面积、农业总供水量、土地总面积等确定约束方程,各种参数在前述已有研究及对统计资料分析、预测的基础上确定^[9]。通过模型的计算得到不同生态目标的水土资源配置方案,其中 3 种比较典型生态目标的优化配置方案见表 5。

表 5 典型生态目标的水土资源配置方案

Table 5 Water-land allocation scenarios for different ecological targets

决策变量	方案 1			方案 2			方案 3		
	沙源地基本受到控制的 土地利用优化配置方案			沙源地受到控制的 土地利用优化配置方案			沙源地受到控制且作物类型结构 较合理的土地利用优化配置方案		
	大兴	怀来	张北	大兴	怀来	张北	大兴	怀来	张北
X_1 (hm ²)	74 008.6	70 156.2	20 439.8	66 645.3	67 283.7	14 307.9	76 294.2	58 620.7	14 307.9
X_2 (hm ²)	0	0	0	32 825.3	2 872.6	6 131.9	37 577.8	16 598.1	6 131.9
X_3 (hm ²)	4 207.6	43 430.0	42 024.3	4 207.7	43 430.0	42 024.3	3 167.4	43 430.0	42 024.3
X_4 (hm ²)	—	11 740.0	373.1	—	11 740.0	373.1	—	11 740.0	373.1
X_5 (hm ²)	28.4	0	31 301.8	0	0	0	0	0	0
X_6 (hm ²)	5 186.2	2 610.0	0	9 817.9	2 610.0	0	7 390.0	2 610.0	0
X_7 (hm ²)	—	0	53 253.4	—	0	166 927.6	—	0	33 436.4
X_8 (hm ²)	10.5	33 694.6	249 809.1	10.5	16 260.0	167 437.2	1 500.4	16 260.0	0
X_9 (hm ²)	22 991.7	5 075.4	0	7 056.4	22 510.0	0	0	17 650.0	0
需水量 (10 ⁸ m ³)	4.01	6.45	11.17	5.12	6.65	12.30	5.48	6.94	13.81
最大效益 (10 ⁸ 元)	3.874	1.39	3.231	8.272	1.49	4.827	9.007	1.560	6.669

3 空间配置方案

仅有水土资源优化配置方案的总量数据还不能真正对当地的防沙治沙起作用。只有将水资源优化配置方案落实到空间上,才有可能对当地的生态建设与调整提供可实施的方案。本研究的水土资源优化配置到空间方案的过程见图1。根据野外调查结果,研究区容易产生沙尘天气的主要土地利用类型是低覆盖度草地、部分农耕地、裸地和未利用地等。在优化配置方案计算中,尽量优先考虑将这些土地转型和调整。总的原则和方法是依据土地利用现状^[3]与土地适宜性评价^[4],确定土地利用转型的类型是土地利用类型与土地适宜性评价不一致、耗水量大而生态效益较差、生态系统内部状态比较脆弱且易起沙的土地利用类型。在GIS技术的支持下,很容易就可将上述的低覆盖度草地、裸地和未利用地等确定出空间位置,而且这些都是必需进行整理建设的土地。河滩地、沙地、沙土地和低覆盖度草地改造为中覆盖度草地;疏林地逐步改造为中覆盖度或高覆盖度草地;建设用地面积在现状基础上略有增加,主要是在现状用地周围。但对于耕地就没有这么简单,因为耕地不能完全转型,不同配置方案所需转型的耕地量也不一致。因此,将土地利用现状图与土地资源图叠加,必要时还可叠加由数字高程图生成的坡度图。根据耕地的坡度状况及生态环境质量改善的要求,分布在适宜性差和坡度25°以上的耕地完全进行退耕,15°~25°的耕地根据需要部分进行退耕,剩余部分改造为梯田;分布在适宜性好的耕地根据需要予以保留。根据上述的方法和手段将表5中的方案1落实到空间并与土地利用现状比较如图2~图4(见图版Ⅲ)。

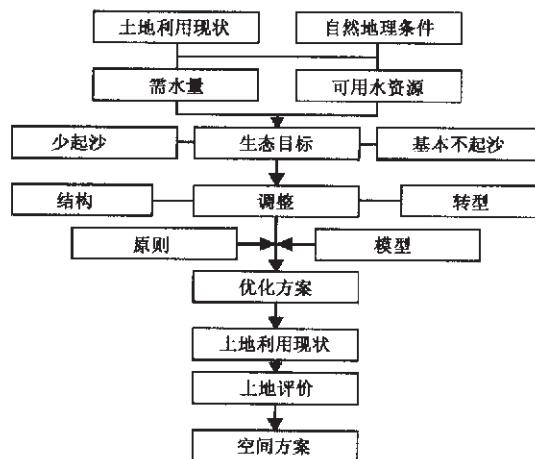


图1 防沙治沙水土优化配置过程

Fig.1 Optimal water-land allocation procedure

4 结语

研究区属于3个不同的生态类型区,自然地理条件和土地利用方式也不一致,因此,在土地转型调整时,除都要先考虑沙地、裸土地等用地类型外,对耕地的调整也不尽相同:大兴区以部分平原旱地转变为中覆盖度草地为主;怀来县以坡耕地退耕还草为主,主要分布在15°以上;张北县以旱耕地退耕和提高草地覆盖度为主。目前围绕生态目标,即“要办多少事,需要多少水”,实际上各地的水资源很难满足,如果仅从“要多少水,能办多大事”的角度也能完成不同的配置方案,但对于防沙治沙的作用有限。因此,要达到预想的生态目标,必须在节水技术应用上有所突破。同时,这里有广大的民众,达到生态目标还需考虑各种方案的经济效益,本研究的方案考虑了经济效益问题,但其基础还是要有适当的水资源投入。此外,研究区目前对水资源短缺的对策大多是开发地下水,其环境效应则应另作研究。

参考文献(References):

- [1] 张晓龙,等.近年来中国北方沙尘暴成因及其防治[J].灾害学,2001,16(3):70~75. [ZHANG Xiao-long, et al. Causes of sand-dust storm in northern China in recent years and its control. *Journal of Catastrophology*, 2001, 16(3): 70~75.]
- [2] 叶笃正,丑纪范,刘纪远,等.关于我国华北沙尘天气的成因与治理对策[J].地理学报,2000,55(5):513~520. [YE Du-zheng, CHOU Ji-fan, LIU Ji-yuan, et al. Causes of sand-stormy weather in northern China and control measures. *Acta Geographica Sinica*, 2000, 55(5): 513~520.]
- [3] 刘纪远,等.土地利用,中国资源环境遥感数据库[Z].北京:中科院地理科学与资源研究所,2000.[LIU Ji-yuan, et al. Land

Use Data in Remote Sensing Based Re-sources and Environment Data Base of China. Beijing: Institute of Geographic Sciences and Natural Resources Research, CAS, 2000.]

[4] 河北省统计局.河北农村统计年鉴 2001[Z]. 北京: 中国统计出版社, 2001. [Statistic Bureau of Hebei Province. Yearbook on Rural Statistics of Hebei Provinces. Beijing: China Statistic Press, 2001.]

[5] 中国 1:100 万土地资源编辑委员会. 中华人民共和国 1:100 万土地资源图[Z]. 西安: 西安地图出版社, 1980~1988. [Editorial Broad of Land Resources Map of China (1:1000000). Land Resources Map of China (1:1000000). Xi 'an: Xi 'an Map Press, 1980~1988.]

[6] 农业部农业水土工程重点开放实验室, 西北农业大学农业水土工程研究所. 西北地区农业节水与水资源持续利用[M]. 北京: 中国农业出版社, 1999. [Key Laboratory on Agricultural Water-Land Project of Ministry of Agriculture, Institute of Agricultural Water-Land Project of Northwest Agricultural University. Saving Water in Agricultural and Sustainable Use of Water Resources in the North-west Area of China. Beijing: China Agricultural Press, 1999]

[7] 刘燕华, 等. 柴达木盆地水资源开发利用与生态环境保护[M]. 北京: 科学出版社, 2000. [LIU Yan-hua, et al. Water Resources Development and Environment Protection in Qaidam Basin. Beijing: Science Press, 2000]

[8] 邓聚龙. 灰色系统工程[M]. 武汉: 华中工学院出版社, 1987. [DENG Ju-long. Gray System Engineering. Wuhan: Huazhong Technology College Press, 1987.]

[9] 姚华荣, 郑度, 吴绍洪. 首都圈防沙治沙典型区水土资源优化配置——以河北省怀来县为例[J]. 地理研究, 2002, 21(5): 531~542. [YAO Hua-rong, ZHENG Du, WU Shao-hong. Optimum allocation of land and water in the typical sand regions around Beijing: a case study in Huailai County. *Geographical Research*, 2002, 21(5): 531~542.]

[10] 康慕谊, 姚华荣, 等. 陕西关中地区土地资源优化配置研究[J]. 自然资源学报, 1999, 14(4): 363~367. [KANG Mu-yi, YAO Hua-rong, et al. Land use structure optimization for Guanzhong Region, Shaanxi Province. *Journal of Natural Resources*, 1999, 14(4): 363~367.]

[11] 李文华. 持续发展与资源对策[J]. 自然资源学报, 1994, 9(2): 97~106. [LI Wen-hua. Sustainable development and natural resource strategy for natural resource management. *Journal of Natural Resources*, 1994, 9(2): 97~106.]

[12] 联合国粮农组织. 产量与水的关系[R]. 罗马: 1979. [FAO. Relationship between Production and Water. Rome: 1979.]

[13] 刘黎明, 等. 土地资源调查与评价[M]. 北京: 科学技术文献出版社, 1994. [LIU Li-ming, et al. Survey and Evaluation of Land Resources. Beijing: Science and Technology Literature Press, 1994.]

[14] 刘彦随. 区域土地利用优化配置[M]. 北京: 学苑出版社, 1999. [LIU Yan-sui. Optimal Allocation on Regional Land Use. Beijing: Xueyuan Press, 1999.]

[15] 王勤学. 试论经济发展中的资源合理配置[J]. 土国与自然资源研究, 1993, 4 7~10. [WANG Qin-xue. Preliminary study on rational allocation of resources in economic development. *Territory and Natural Resources Study*, 1993, 4 7~10.]

[16] 王松霈. 自然资源利用与生态经济系统[M]. 北京: 中国环境科学出版社, 1992. [WANG Song-pei. Natural Resources Use and Eco-Economic System. Beijing: China Environmental Sciences Press, 1992.]

[17] 吴凯, 于静洁. 首都圈典型沙区水分资源的变化趋势及其利用[J]. 地理科学进展, 2001, 20(3): 209~216. [WU Kai, YU Jingjie. Changing tendencies and utilizations of water resources in the typical sand regions around Beijing. *Progress in Geography*, 2001, 20(3): 209~216.]

[18] 吴传钧, 郭焕成. 中国土地利用[M]. 北京: 科学出版社, 1994. [WU Chuan-jun, GUO Huan-cheng. Land Use of China. Beijing: Science Press, 1994.]

[19] 姚华荣, 曹明明. 关中地区土地资源持续利用探讨[A]. 秦大河. 可持续发展战略探索[C]. 北京: 中国环境科学出版社, 1998. 272~275. [YAO Hua-rong, CAO Ming-ming. Discussion on sustainable land resources use of Guanzhong Areas. QIN Da-he. Sustainable Development Strategy Study. Beijing: China Environmental Sciences Press, 1998. 272~275.]

[20] 张正栋. 榆中县灌溉型水土资源利用系统模型的调控与优化[J]. 西北师范大学学报, 1995, 31(2): 73~79. [ZHANG Zheng-dong. Control and optimization of utilization system model of irrigational water-land resources in Yuzhong County. *Journal of Northwest Normal University*, 1995, 31(2): 73~79.]

[21] 陈烈, 廖金凤. 土地利用总体规划的理论与实践[M]. 北京: 科学出版社, 1995. [CHEN Lie, LIAO Jin-feng. Theory and Pr-

actice of Land Use Plan. Beijing: Science Press, 1995.]

[22] Kikuchi T. Sustainable changes of agricultural land use in New Zealand[J]. *Geogr. Report Tokyo Metropol. Univ.*, 1995, (30): 147~156.

[23] Smyth A J, Dumanski J. FESLM: An international framework for evaluating sustainable land management[R]. *World Soil Resources Reports* 73, Rome, Italy, 1993.

[24] Stomph T J, Fresco L O, Keulen H. Land use system evaluation: concepts and methodology[J]. *Agricultural Systems*, 1994, (44): 243~255.

Optimal spatial allocation of water-land resources for sand/dust storm prevention and control in different ecological regions of the capital circle

WU Shao-hong¹, YAO Hua-rong^{1,2}, YANG Qin-ye¹

(1. Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China;
2. Xi 'an Jiaotong University, Xi 'an 710049, China)

Abstract: The capital circle including 47 counties and cities is one of the most important sand/dust storm source areas for sand/dust storms of recent years that have affected some metropolis such as Beijing and Tianjin. This situation is highly concerned by the whole society. According to the features of eco-geographical regions of the circle, Daxing is a case standing for the north rim of defoliated broad-leaved forest and shrub-grass region of North China, Huailai is for shrub and grassland of the Sangganhe River and Yanghe River Basins, and Zhangbei is for steppe of west Bashang Highland. Objectives of this study are to control and to reduce the possibility of sand/dust storm through re-allocation of the usage of water-land resources. Data for the study are from "Land Use Database" of China Resources and Environment Remote Sensing Data Base; 1:1000 000 Land Resources Map of China; and the local government statistics and field surveys. Analysis indicated that main problems for the causes of dust/sand storm occurrence are illogical land use structure, irrational land use allocation and unsatisfied water resource for land use requirement. Taking water resources supply and land-use types as the two most important restraining factors, gray linear programming model was applied to re-allocate water-land resources. Sand/dust storm prevention and control was taken as the first objective of the model. Economic development and sustainable regional development is the second. Different scenarios for different objective schemes were completed. Geographical information system (GIS) technology was employed to map the different scenarios/schemes. Land use type conversion based on water resources limitation is the main way to achieve the scenarios. Common measurements are sandy land controlling and bare land covering. Converting parts of dry farmland to medium coverage grassland is the special measurements for Daxing; converting sloping (higher than 15°) farmland to grassland is for Huailai; and reducing dry farmland and increasing coverage of grassland are for Zhangbei.

Key words: sand/dust storm prevention and control; water-land resources; optimal allocation; spatial scheme

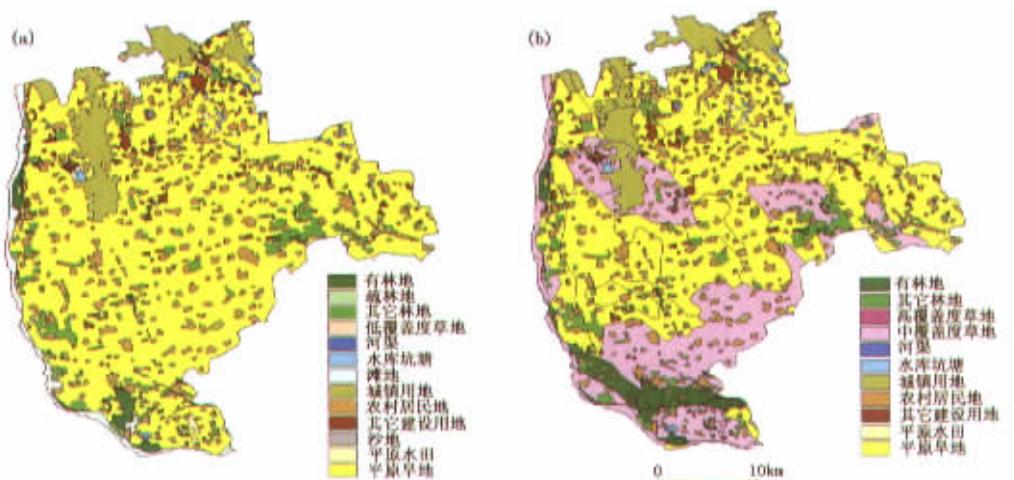


图2 大兴土地利用 (a) 与防沙治沙土地资源空间配置 (b)

Fig.2 Land use (a) and optimal spatial land resources allocation (b) for Daxing

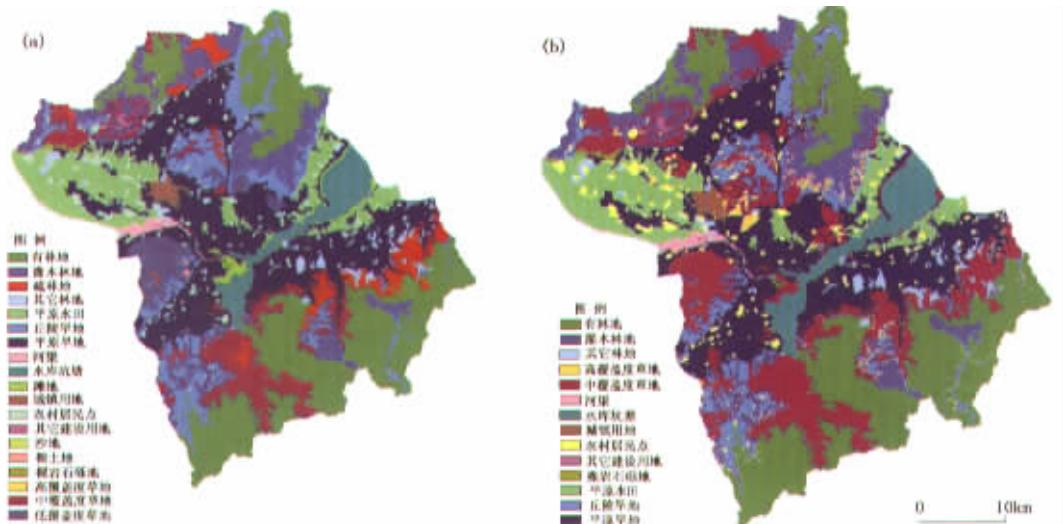


图3 怀来土地利用 (a) 与防沙治沙土地资源空间配置 (b)

Fig.3 Land use (a) and optimal spatial land allocation (b) for Huailai

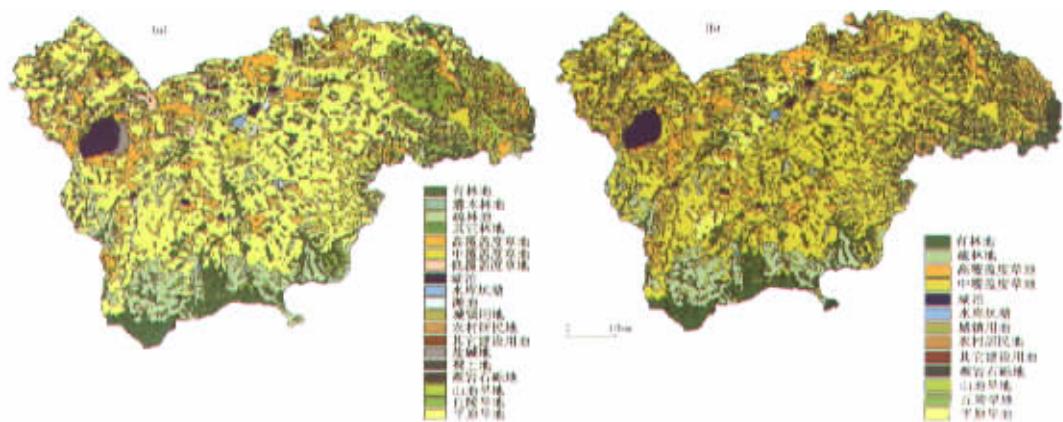


图4 张北土地利用 (a) 与防沙治沙水土资源空间配置 (b)

Fig.4 Land use (a) and optimal spatial water-land allocation (b) for Zhangbei