

文章编号 :0253-2409(2004)01-0027-04

利用焦化工艺处理废塑料技术研究

II. 200 kg 焦炉中试试验

余广炜¹, 廖洪强², 钱 凯², 李东涛², 蔡九菊¹

(1. 东北大学 国家环保生态工业重点实验室, 辽宁 沈阳 110004; 2. 首钢技术研究院, 北京 100041)

摘要: 利用 200 kg 焦炉考察两种废塑料(PS 和 WMP)与首钢炼焦配煤按不同比例均匀混合共焦化所得焦炭的质量变化规律, 以期能为焦化工艺处理废塑料技术的工业应用提供基础数据。研究表明: 废塑料与煤共焦化所得焦炭冶金焦率和焦炭质量降低明显, 且随着废塑料添加比例增加, 所得焦炭质量劣化程度整体加大; 与添加同比例的 PS 相比, 添加 WMP 虽得到较差的冶金焦率, 但所得焦炭的转鼓强度(M_{40} 和 M_{10}) 和反应后强度(CSR) 均优于添加 PS 的情形。废塑料与炼焦配煤简单混合共焦化, 严重影响焦炭质量, 不能应用于工业实践。

关键词: 废塑料; 煤; 焦炭; 共焦化

中图分类号: X784 文献标识码: A

塑料制品广泛使用所带来的“白色污染”已经成为倍受关注的社会问题。近年来, 有部分学者提出了废塑料与煤共焦化的工艺技术, 旨在充分利用现有成熟的焦化设备和系统, 大规模地处理废塑料, 并将废塑料分解成焦炭、焦油和煤气, 实现废塑料的资源化利用和无害化处理, 具有显著的工业应用前景^[1,2]。Collin^[3]等将废塑料先与煤焦油沥青共热解制得活性沥青再将其与煤共焦化, 所得焦炭的质量得到改善; Ishiguro^[4]等将废塑料放入焦炉底部, 上面再盖上焦煤进行炼焦; 中科院山西煤化所李东涛等^[5,6]研究结果表明, 废塑料与焦煤共焦化的过程中, 添加塑料能提高焦油收率, 降低焦煤热解水的生成率。

前期的研究工作表明, 北京市生活垃圾中的废塑料与首钢炼焦配煤均匀混合共焦化过程中产生“协同效应”, 并可增加优质焦油产量。为进一步探讨利用焦化工艺处理废塑料技术的可行性, 本文利用 200 kg 焦炉实验, 考察废塑料(Polystyrene and Waste Mixed Plastics)与首钢炼焦配煤(BC)按不同比

例均匀混合后共焦化所得焦炭质量的变化规律, 重点考察废塑料与煤共焦化所得焦炭冶金焦率、转鼓强度指标(M_{40} 和 M_{10})、反应性(CRI)和反应后强度(CSR), 为焦化工艺处理废塑料的工业应用提供优化方案, 该方面的研究工作迄今未见报道。

1 试验部分

1.1 试验原料 试验采用首钢现有炼焦配煤(BC)和北京市石景山区生活垃圾中的废塑料 WMP 和废聚苯乙烯塑料 PS 为试验原料。试验前将 WMP 和 PS 经过简单破碎处理, 使其粒度达到约 10 mm。煤样不需要再进行制样处理, 直接作为配合原料。破碎后的废塑料按一定比例分别与炼焦煤进行人工或机械混合, 并调节水分到 10% (与生产用煤水分一致) 加入焦炉。原料的工业分析和元素分析结果如表 1 所示。

从表 1 中所列结果发现, PS 挥发分较高, C 元素所占比例较大, 但其 H 含量则明显低于 WMP, 这是由于 PS 主要成分为环烃, WMP 则以链烃为主的缘故。总体看来, 与炼焦配煤相比, 两种废塑料的灰

表 1 原料的工业分析与元素分析

Table 1 The proximate and ultimate analysis of samples

Sample	Proximate analysis w_d / %			Ultimate analysis w_{daf} / %				
	V	A	FC	S	C	H	N	O(diff.)
BC	23.40	9.52	67.08	0.87	83.92	5.07	1.29	8.85
PS	97.25	2.30	0.45	0.08	87.24	8.80	0.06	3.82
WMP	96.11	3.84	0.05	0.05	84.62	14.12	0.12	1.09

收稿日期: 2003-01-26; 修回日期: 2003-10-09

基金项目: 国家自然科学基金重点项目(50334020); 北京市科委基金(H020620330310)

作者简介: 余广炜(1979-) 男, 福建闽清人, 博士研究生, 热能工程专业。E-mail: ygwneu@sina.com

分、固定碳、硫、氮和氧的含量较低,挥发分、碳、氢含量较高。与废塑料 PS 相比,废塑料 WMP 的 H/C 原子比较大,因此在与煤共焦化过程中热解自由基的作用将比 PS 显著。

1.2 试验设备与条件 中试试验的主体设备是 200 kg 焦炉,该焦炉为单孔炭化室,底部和两侧加热,炭化室有效长为 800 mm,有效高 900 mm,宽度为 450 mm,装煤量 230 kg(干煤),结焦时间为 18 h,焦饼中心温度大于 950 °C。该试验焦炉的加热制度、装炉、推焦、熄焦、凉焦等工序均与生产焦炉近似。每次试验前先清理焦炉导气管道,检查焦炉密封状况和加热煤气的压力,并将炉温保持在 900 °C。炼焦完毕后的推焦、熄焦和凉焦均按照工业生产中的焦炉操作要求进行。焦炭凉焦 1 h ~ 2 h 后开始进行筛分试验,筛分实验

按照国家标准进行,得出 > 80 mm, > 60 mm, > 40 mm, > 20 mm, > 10 mm 和 < 10 mm 共六个级别的粒度分布数据,考察不同配比的两种废塑料(PS/WMP)分别与炼焦配煤(BC)共焦化所得焦炭筛分组成的变化规律。对做完筛分试验后的各粒级焦炭按照相应的比例进行采集,然后再按四分法进行缩分,主要用于分析焦炭的工业分析、元素分析及灰分成分分析,同时测试样品的抗碎强度(M_{40})和耐磨性能指标(M_{10}),反应性(CRI)和反应后强度(CSR)。

2 结果与讨论

2.1 焦炭工业分析与元素分析 共焦化所得焦炭进行工业分析与元素分析结果如表 2 所示。

从表 2 可以看出添加废塑料与煤共焦化所得焦

表 2 焦炭工业分析和元素分析

Table 2 The proximate and ultimate analysis of cokes

Sample	Proximate analysis w_d / %			Ultimate analysis w_{daf} / %				
	V	A	FC	S	C	H	N	O(diff.)
100% BC	12.69	1.01	86.30	96.76	0.71	0.81	1.20	0.52
1% PS + 99% BC	12.11	1.42	86.47	93.81	0.79	0.80	1.04	3.56
2% PS + 98% BC	12.46	1.06	86.48	93.81	0.66	0.78	1.19	3.56
4% PS + 96% BC	12.50	1.58	85.92	93.44	0.81	0.81	1.12	3.82
1% WMP + 99% BC	12.21	1.36	86.93	93.65	0.80	0.79	1.23	3.53
2% WMP + 98% BC	12.06	1.44	86.50	93.33	0.71	0.81	1.22	3.93
4% WMP + 96% BC	12.09	1.46	86.45	93.42	0.68	0.79	1.16	3.95
5% WMP + 95% BC	12.40	1.59	86.01	93.22	1.08	0.77	0.97	3.96

炭的灰分变化不大,但由于灰产率普遍降低,从而导致焦炭所产生的灰分总量及其碱性氧化物总量的减少,这有利于降低高炉炉渣碱度和高炉气中的钾钠蒸汽含量,减缓焦炭与 CO_2 反应消耗,这对高炉炼铁有积极意义。另外,共焦化所得焦炭的挥发分增加,将可能增大推焦时粉尘放散量,提高烟气量及烟气中多环芳烃含量,这些问题需进一步研究并加以解决。

2.2 焦炭筛分组成 将粒径大于 20 mm 的焦炭视为冶金焦炭,将小于 20 mm 的焦炭视为焦丁和焦末,冶金焦率就按块度大于 20 mm 焦炭收率的总和计算。首钢炼焦配煤与不同废塑料(PS 和 WMP)按不同比例均匀混合后共焦化所得焦炭的冶金焦率对比分析结果如图 1 所示。

从图 1 可以看出,筛分试验表明,添加废塑料后所得焦炭的冶金焦率均有不同程度降低,而且随着废塑料添加比例的增加,冶金焦率降低程度越大。

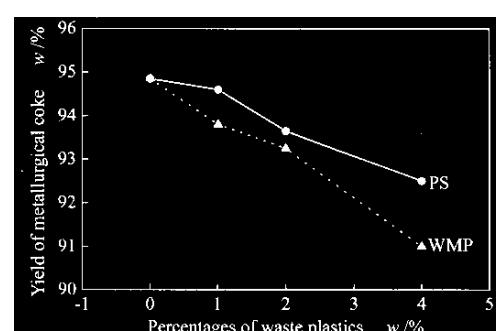


图 1 废塑料配比对冶金焦率的影响

Figure 1 The effect of the percentages of Mp and PS on metallurgical coke

在相同配比的前提下,废塑料 PS 与煤共焦化所得焦炭的冶金焦率均大于添加废塑料 WMP 的情形。上述筛分试验结果表明,废塑料的添加使得焦炭易于脆化,冶金焦率降低。这主要由于废塑料属于受热易分解的有机高分子聚合物,在受热时产生大量挥发分,当这些大量挥发分物质逸出时造成焦炭孔洞

和显裂纹,使得焦炭易碎。废塑料 PS 与煤共焦化冶金焦率高于添加相同配比的废塑料 WMP,这可能与废塑料的化学组成有关,废塑料 PS 是苯乙烯的聚合物,主要以苯乙烯为结构单元,而废塑料 WMP 则由聚乙烯、聚丙烯以及聚氯乙烯等混合而成,这些聚合物主要以链状的烯类化合物为结构单元。当废塑料与煤共焦化时,废塑料 PS 热分解产生的芳烃类化合物

更易于与煤受热分解的芳烃类化合物形成“共溶体”,共焦化产生的胶质体性质得到改善,从而导致添加 PS 的冶金焦率高于添加 WMP。

2.3 焦炭转鼓试验与二氧化碳反应性测试 筛分试验后,分别取 $>80\text{ mm}$ 和 $>60\text{ mm}$ 粒度的焦炭各 25 kg 进行转鼓试验和二氧化碳反应性测试,考察焦炭冷热强度的变化规律,结果如图 2 和图 3 所示。

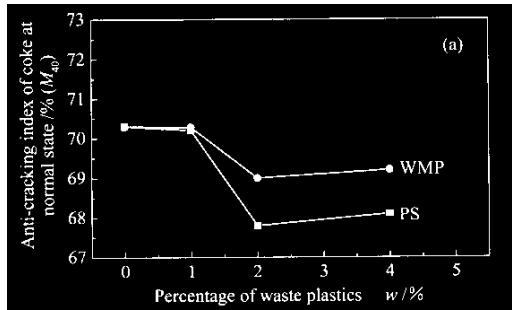



图 2 废塑料配比对焦炭抗碎强度(M_{40})和耐磨性能指标(M_{10})的影响

Figure 2 Effect of percentages of waste plastics on M_{40} and M_{10} of the coke from co-coking

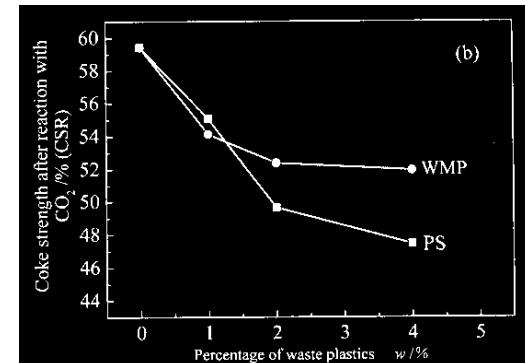
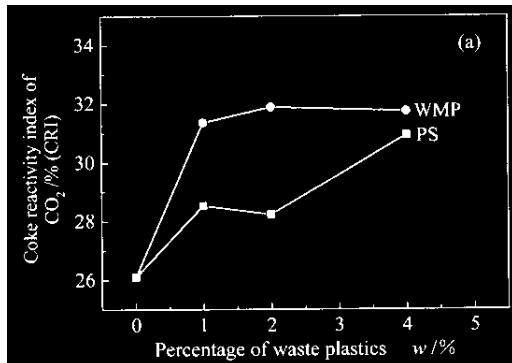



图 3 废塑料配比对焦炭反应性(CRI)和反应后强度(CSR)的影响

Figure 3 Effect of percentages of waste plastics on CRI and CSR of the coke from co-coking

从图 2 可以看出,与不添加废塑料的情况相比,添加废塑料后焦炭的抗碎强度(M_{40})整体出现下降趋势,而耐磨性强度(M_{10})整体上是降低的。主要原因是废塑料在与煤共焦化时,首先完成熔融缩体过程,其体积收缩后形成空洞,然后进行热分解,产生大量挥发分冲破煤热解产生的胶质体层再次形成孔隙,形成微裂纹,使得焦炭抗碎强度降低和耐磨性能变差。随着废塑料添加比例增加,焦炭抗碎强度(M_{40})出现降低后增加的趋势,这主要是由于添加废塑料的比例增大后,废塑料中的挥发气体不再分散逸出,而是形成气流柱,使焦炭在某一位置的裂纹进一步扩大,这直接导致焦炭其它地方不受气流的冲击影响或影响较小,显微纹明显减少,所以 M_{40}

有所提高。从图 3 可以看出,与不添加废塑料的情况相比,添加废塑料后焦炭的反应性(CRI)整体出现升高的趋势,相应的反应后强度(CSR)成整体降低趋势。主要原因在于废塑料均属高挥发性物质,受热产生的挥发分影响焦炭隐裂纹和孔结构,使得焦炭微孔数量与孔比表面积增加,使 CO_2 深入焦炭内部,导致焦炭反应性增加和反应后强度降低。在添加比例相同的情况下,废塑料 WMP 与煤共焦化所得焦炭的抗碎强度(M_{40})整体高于添加废塑料 PS,耐磨性能指标(M_{10})则整体低于添加废塑料 PS 的情况;同时,反应性(CRI)和反应后强度(CSR)基本上均大于添加废塑料 PS 的情况,这与两种废塑料自身的组成结构密切相关。

上述试验结果表明,添加废塑料后,尤其是废塑料配比超过1%时,焦炭的抗碎强度(M_{40})和耐磨性能指标(M_{10})、反应性(CRI)和反应后强度(CSR)劣化严重,焦炭质量下降,必须寻求一定的添加剂来消除废塑料对焦炭质量的影响,这将在以后的研究工作中得到体现。

3 结 论

(1) 废塑料与煤共焦化所得焦炭的冶金焦率较不添加废塑料时低,而且随着废塑料添加比例增加,所得焦炭的冶金焦率降低程度增大。在添加比例相同的条件下,添加废塑料WMP与煤共焦化所得焦炭的冶金焦率明显低于添加废塑料PS的情形。

(2) 废塑料与煤共焦化所得焦炭的转鼓强度指标(M_{40} 和 M_{10})、反应性(CRI)和反应后强度(CSR)均劣于炼焦配煤不添加废塑料炼焦时所得焦炭。随着废塑料添加比例增加,所得焦炭质量劣化程度整体加大。在添加比例相同的条件下,废塑料WMP与煤共焦化所得焦炭的转鼓强度指标(M_{40} 和 M_{10})和反应后强度(CSR)均优于添加废塑料PS的情形。

(3) 首钢炼焦配煤中添加废塑料后,共焦化所得焦炭质量明显下降,因此需要寻求一定添加剂来消除这种负面影响,以实现废塑料与煤共焦化技术的工业应用。

参 考 文 献

- [1] Nippon Steel Corp(Yawa), Treating waste plastics to give high-added-value tar, light oil and gas by charging coal for coking ,opt. blended with waste plastics , into coke oven , and cracking plastics thermally during carbonization[P]. Japan Patent :JP08157834 ,1996.
- [2] Kansai Netsukagaku KK(Kanu), Coke making utilizing waste plastic -comprises charging preliminarily heat decomposed waste plastic with raw coal into coke oven[P]. Japan Patent :JP07216361 ,1995.
- [3] Collion G , Bujnowska B , Placzek J. CO-coking of coal with pitches and waste plastic[J]. *Fuel Process Technn* ,1997 ,50(1):179-184.
- [4] Ishiguro , Hiroki , Matsumura , et al . Method for charging coal and waste plastic into coke oven and apparatus for loading coal and waste plastic in coal charging vehicle[P]. Japan Patent :JP09132782. 1997-05-20.
- [5] 李东涛¹ 李文² 李保庆¹. 焦煤与不同种类废塑料共焦化的研究[J]. 燃料化学学报 ,2001 ,29(1):19-23.
(LI Dong-tao ,LI Wen ,LI Bao-qing. Co-carbonization of coking coal with different waste plastics[J]. *Journal of Fuel Chemistry and Technology* ,2001 ,29(1):19-23.
- [6] 李文¹ ,田福军¹ ,李保庆¹. 塑料与煤低温共焦化产物分析[J]. 中国矿业大学学报 ,2001 ,29(2):155-159.
(LI Wen , TIAN Fu-jun , LI Bao-qing. Analysis of product distribution of low temperature co-carbonization of coal with plastics[J]. *Journal of China University of Mining and Technology* ,2001 ,29(2):155-159.

DISPOSAL OF WASTE PLASTICS BY COKING PROCESS

II . 200 kg COKING-OVEN EXPERIMENT

YU Guang-wei¹ , LIAO Hong-qiang² , QIAN Kai² , LI Dong-tao² , CAI Jiu-ju¹

(1. State Key Laboratory of Bio-industry , Northeastern University , Shenyang 110004 , China ;
2. Shougang Technical Research Institute , Beijing 100041 , China)

Abstract : Using 200 kg coking-oven , the quality of the coke from the co-coking of coal with PS(polystyrene) and WMP(waste mixed plastics) was studied to provide fundamental data for further industrial application. The results showed that the yield of metallurgical coke decreased obviously and at the same time , the quality of coke also decreased with the increasing of percentages of waste plastics added. Though the yield of metallurgical coke was much lower for WMP addition , co-coking of coal with WMP got better coke quality indexes of M_{40} , M_{10} and CSR than co-coking of coal with the same ratio of PS. It was proved that co-coking of coking coal only with waste plastics simply couldn 't be applied in industry as a solution of " white pollution ".

Key words : waste plastics ; coal ; coke ; co-coking

Foundation item : Key Program of National Natural Science Fundation of China(50334020) ; Foundation of Science & Technology Committee of Beijing(H020620330310).

Author introduction : YU Guang-wei(1979-), male , Ph. D. student , engaged in thermal engineering. E-mail : ygwneu@sina.com