

珠海空气中可吸入颗粒物(PM_{10})的时空变化特征

潘建国¹，曹军骥²，麦潮安¹，李顺诚³

(1. 珠海市环境保护监测站, 广东 珠海 519000; 2. 中国科学院 地球环境研究所 黄土与第四纪地质国家重点实验室, 陕西 西安 710075; 3. 香港理工大学, 香港)

摘要: 选取 2000 年 6 月—2001 年 5 月珠海空气中 PM_{10} 的观测数据, 分析其在 3 个监测点(香洲、前山和吉大)的时空演变特征。结果表明, 珠海 PM_{10} 的年均质量浓度为 $40 \mu\text{g}/\text{m}^3$ (校正后为 $52 \mu\text{g}/\text{m}^3$), 低于国家 PM_{10} 的二级质量标准, 与国内外其他城市相比, 珠海 PM_{10} 相对较低, 表明珠海的大气颗粒物污染轻微。2001 年 4 月 14, 15 日珠海 PM_{10} 日均值显著增高, 达到 $92, 127 \mu\text{g}/\text{m}^3$, 对比香港及北方粉尘源区的颗粒物浓度及气团轨迹分析结果可知, 珠海也受到了北方沙尘暴的影响。3 个站点的 PM_{10} 月均质量浓度变化主要表现为夏、秋季低, 冬、春季高。珠海市大气 PM_{10} 的日变化形式以白天高、夜晚低为主。

关键词: PM_{10} ; 沙尘暴; 珠海

中图分类号: X513 文献标识码: A 文章编号: 1001-6929(2003)05-0006-05

Spatial-Temporal Variations of Atmospheric PM_{10} over Zhuhai

PAN Jian-guo¹, CAO Jun-ji², MAI Chao-an¹, LEE Shun-cheng³

(1. Zhuhai Environmental Monitoring Station, Zhuhai 519000, China; 2. State Key Lab of Loess & Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710075, China; 3. The Hong Kong Polytechnic University, Hong Kong, China)

Abstract: Observational data of atmospheric PM_{10} in Zhuhai city from June 2000 to May 2001 was chosen to analyze the spatial and temporal variation characteristic of PM_{10} in 3 monitoring stations (Xiangzhou, Qianshan and Jida). It was shown that the annual average PM_{10} concentration was $40 \mu\text{g}/\text{m}^3$ (the corrected mass concentration is $52 \mu\text{g}/\text{m}^3$) which did not exceed the Class II category of the National Ambient Air Quality Standards in China. Compared with other cities in the world, the atmospheric PM_{10} pollution in Zhuhai is slighter. The daily PM_{10} concentrations monitored in Zhuhai reached the peak values being 92 and $127 \mu\text{g}/\text{m}^3$ on April 14 and 15, 2001 respectively. In comparison with the particulate matter concentrations of Hong Kong (nearby) and Yulin station (at the Asian Dust Source Regions), the high PM_{10} values occurred at Zhuhai and Hong Kong in-phase. This as well as the results of trajectory analysis implied that Northern China dust storms were transported to Zhuhai. The monthly concentrations of PM_{10} at three stations are at low level in the summer and fall periods and at high level in the winter and spring periods. The daily PM_{10} concentration is mostly high in the daytime and low at night.

Key words: PM_{10} ; dust storm; Zhuhai

珠海地处广东省珠江三角洲的西南部, 总面积 7649 km^2 , 其中陆地 1514 km^2 。常住人口 73.9 万, 暂住人口 51.0 万(2000 年的统计数据)。珠海市于 1997 年 9 月获得国家环境保护模范城市称号, 1998 年又荣获联合国颁发的“国际改善居住环境最佳范例奖”。在全国 46 个重点城市的空气环境质量统计中, 珠海市空气质量一直居于良好状况, 属于国内大气污染最

轻的城市之一。

珠海市环境保护监测站在珠海市建成城区内(58.5 km^2)设立 3 个日常空气监测点(香洲、前山和吉大), 监测珠海市的空气环境质量, 包括大气总悬浮颗粒物(TSP)、可吸入颗粒物(PM_{10})、二氧化硫和氮氧化物等。其中 PM_{10} 是 2000 年 6 月 5 日后正式增列的监测项目, 采用 TEOM(锥形振动微天平)自动在线监测仪实时监测(每小时一个 PM_{10} 质量浓度值)。笔者选取了 2000 年 6 月—2001 年 5 月 PM_{10} 的观测数据, 分析其在 3 个监测点的时空变化规律, 为有效地控制大气颗粒物污染提供科学依据。

收稿日期: 2002-11-04

基金项目: 国家自然科学基金资助项目(40205018); 香港研究资助

局资助项目(BQ500)

作者简介: 潘建国(1960-), 男, 广东潮州人, 高级工程师。

1 实验方法

珠海市设置3个日常监测点:香洲监测点位于珠海市第一中学一教学楼楼顶,高约20 m,代表居民点和商业区环境;前山监测点位于前山中学一教学楼楼顶,高约17 m,代表新兴工业区环境;吉大监测点位于海滨公园内2层楼的监测站点上,高约10 m,邻近海滨(约200 m),作为城市的清洁对照监测点。这3个点位每天定时向上级单位(中国环境监测总站,广东省环境监测中心站)报送数据。

所有的 PM_{10} 数据由RP 1400a型TEOM(Tapered Element Oscillation Microbalance)自动监测仪(Rupprecht & Patashnick,美国)测得。数据的统计、分析与绘图均使用Microcal origin 5.0软件完成。

2 结果与讨论

2.1 珠海 PM_{10} 质量浓度及其与其他城市的对比

珠海市2000年6月—2001年5月的 PM_{10} 日均质量浓度值统计见表1。

表1 2000年6月—2001年5月珠海市3个站点的 PM_{10} 质量浓度

Table 1 The PM_{10} mass concentrations of three stations in Zhuhai

city from June 2000 to May 2001 $\mu\text{g}/\text{m}^3$

时间	香洲	前山	吉大
2000年6月	41±6	46±6	21±9
2000年7月	39±22	47±21	24±13
2000年8月	20±8	29±12	21±14
2000年9月	33±10	44±16	40±19
2000年10月	22±9	36±10	28±15
2000年11月	42±19	46±21	26±29
2000年12月	45±20	50±23	50±25
2001年1月	33±12	48±19	44±28
2001年2月	49±21	45±28	43±24
2001年3月	45±27	50±31	52±34
2001年4月	50±30	51±43	55±11
2001年5月	44±22	39±19	27±10
年平均值	39	44	36

注 质量浓度以平均值±标准偏差表示。

由表1可知,2000年6月—2001年5月 PM_{10} 的日均值在20~60 $\mu\text{g}/\text{m}^3$ 之间。香洲、前山和吉大3个点的 PM_{10} 平均值分别为39、44和36 $\mu\text{g}/\text{m}^3$,与国家《大气环境质量标准》的 PM_{10} 二级标准(100 $\mu\text{g}/\text{m}^3$)相比,这3个点的 PM_{10} 质量浓度值均未超标,表明珠海市大气颗粒物污染状况轻微。对比这3个站点的年均值可知,吉大点的 PM_{10} 年均值最低(36 $\mu\text{g}/\text{m}^3$),这主要是由于该点位于海滨公园,代表城市 PM_{10} 的背景浓度。前山点的 PM_{10} 年均值最高(44 $\mu\text{g}/\text{m}^3$),表明该站点附近的工业污染源的排放对大气 PM_{10} 有明显贡献。香洲点

PM_{10} 为39 $\mu\text{g}/\text{m}^3$,这主要是由于该点位于城市的居民及商业区内,附近无显著的颗粒物排放源。

TEOM测量空气中的颗粒物时,测得的质量浓度偏低^[1]。国外的最新研究显示,TEOM测得的 PM_{10} 比在实验室用电子天平称量获得的质量浓度低30%左右^[2],另外英国大气颗粒物专家组指出^[3],对TEOM获得的数据采用一个校正因子(1.3)后与其他仪器获得的 PM_{10} 数据进行比对。由于未对珠海TEOM的监测数据与其他的PM监测仪的测量结果进行对比,笔者综合国外的研究结果^[2-3],采用1.3校正TEOM获得的 PM_{10} 监测数据。3个站点 PM_{10} 的平均质量浓度为40 $\mu\text{g}/\text{m}^3$,经校正后为52 $\mu\text{g}/\text{m}^3$ 。图1是珠海 PM_{10} 平均质量浓度(52 $\mu\text{g}/\text{m}^3$)与国内外其他城市的 PM_{10} 浓度水平的对比。如图1所示,珠海的 PM_{10} 明显低于国内的武汉(124 $\mu\text{g}/\text{m}^3$)、兰州(181 $\mu\text{g}/\text{m}^3$)和重庆市(115 $\mu\text{g}/\text{m}^3$)^[4]的 PM_{10} 质量浓度,也低于美国加里福利亚州Rubidoux(77 $\mu\text{g}/\text{m}^3$)^[5]、与美国的洛杉矶(51 $\mu\text{g}/\text{m}^3$)^[5]、法国的巴黎(58 $\mu\text{g}/\text{m}^3$)^[6]和意大利的米兰(55 $\mu\text{g}/\text{m}^3$)^[7]的 PM_{10} 质量浓度相当,高于英国的伯明翰(25 $\mu\text{g}/\text{m}^3$)^[8]和加拿大的多伦多(24 $\mu\text{g}/\text{m}^3$)^[9]。对比可知,珠海市大气 PM_{10} 污染程度较轻,与国外一些空气质量好的城市(洛杉矶、巴黎和米兰)相差不大,也接近美国 PM_{10} 标准。

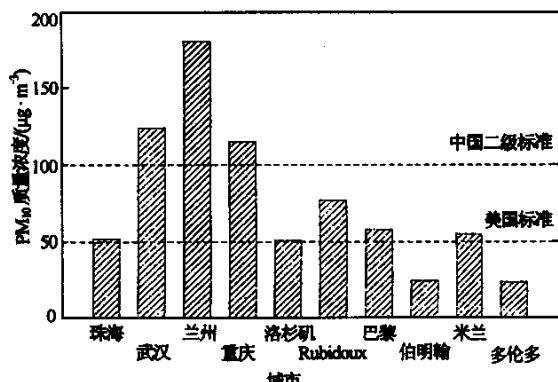
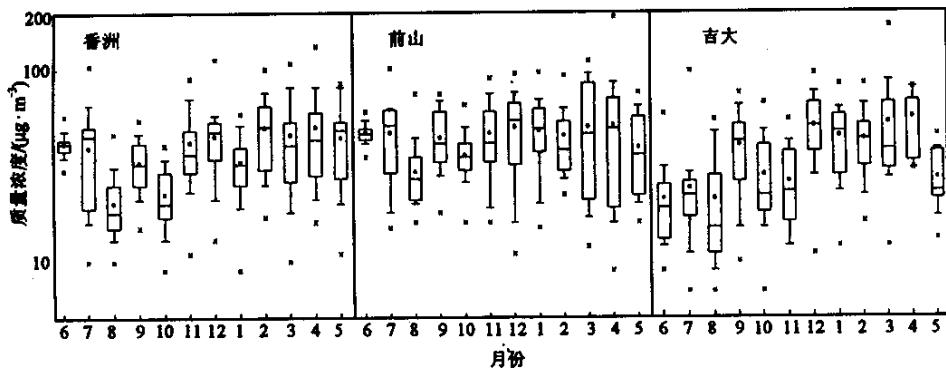


图1 珠海 PM_{10} 质量浓度与其他城市的对比


Fig. 1 The comparison of PM_{10} level at Zhuhai with other cities

2.2 PM_{10} 质量浓度的月平均变化

图2是 PM_{10} 月平均质量浓度的变化图,3个站的 PM_{10} 质量浓度变化不相一致。香洲的夏、秋季(6—11月) PM_{10} 较低,其中8月的 PM_{10} 平均值最低,为20 $\mu\text{g}/\text{m}^3$ 。冬、春季(2000年12月—2001年3月) PM_{10} 较高,其中4月的 PM_{10} 质量浓度颇高。夏、秋季 PM_{10} 偏

低可能主要是由于珠海的降水较丰富,容易冲刷掉空气中悬浮的 PM_{10} 粒子。冬季 PM_{10} 偏高可能主要是由于冬季降水较少,城市大气容易形成逆温层,导致 PM_{10} 质量浓度偏高。春季 PM_{10} 偏高可能有 2 个原因:①春季降水较少,空气中的 PM_{10} 不易被清除;②受北方沙尘暴的影响,可能导致珠海空气中的 PM_{10} 质量浓度增高。对比香洲、前山和吉大点 4 月份的 PM_{10} 平均值是 12 个月中最高的,分别为 50.51 和 55 $\mu g/m^3$ 。检查香洲点 4 月份的日平均值可知,4 月 12—17 日的 PM_{10} 日均值分别为 73.58.92.127.76.67 $\mu g/m^3$ (详见图 3),而与珠海毗邻的香港这几日的 PM_{10} 日均值分别

为 58.82.109.116.115.81.80 $\mu g/m^3$ (数据由香港环境保护署提供)。珠海与香港相距约 60 km,2 个城市同时在 4 月 12—17 日出现异常高的 PM_{10} 质量浓度值(图 3 阴影所示)表明该时段珠江三角洲地区区域空气中的 PM_{10} 质量浓度升高,是受到区域颗粒物来源的影响。对比北方沙尘暴的研究数据^[10]可以发现,4 月 6—11 日中国北方发生了一次强沙尘暴事件(图 3 阴影所示),西北榆林站点(亚洲气溶胶特征实验的一个超级站点)的 TSP 最高日均浓度超过 4 000 $\mu g/m^3$ (见图 3)。已有研究证明,中国北方的沙尘暴对香港也有影响^[11-12]。5 d 的气团轨迹分析结果也证实 4 月 14—

注 小方框为 PM_{10} 的平均值,最低的小叉为 5% 的分布值,最低的小横为 10% 的分布值,大方框的下边界值为 25% 的分布值,大方框的中间线为 50% 的分布值,大方框的上边界值为 75% 的分布值,上小横为 90% 的分布值,上小叉为 95% 的分布值。

图 2 香洲、前山和吉大 PM_{10} 日均值的月变化图

Fig. 2 The monthly variations of daily PM_{10} concentrations at Xiangzhou, Qianshan and Jida stations

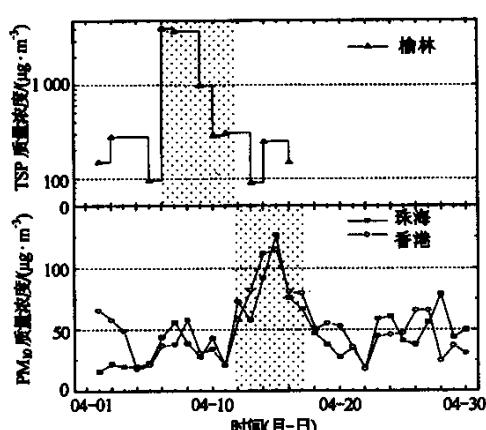


图 3 2001 年 4 月珠海的 PM_{10} 质量浓度与香港 PM_{10} 以及榆林 TSP 浓度的对比

Fig. 3 The comparison of PM_{10} concentrations at Zhuhai, Hong Kong and TSP at Yulin during April 2001
万方数据

15 日珠海(PM_{10} 峰值)的低层大气源自我国西北地区(气团轨迹图略)。因此 4 月 14—15 日珠海 PM_{10} 质量浓度的大幅增高可能主要是受北方沙尘暴的影响,即矿物粉尘长距离输送至珠海而导致珠海空气中 PM_{10} 质量浓度升高。

前山点的 PM_{10} 季节浓度也类似于香洲点,即夏、秋季 PM_{10} 质量浓度低,冬春季 PM_{10} 质量浓度高,但其变化幅度不如香洲点高,这可能是由于该点受附近工业源排放的影响。工业源为常年排放源,不受季节变化影响,故前山点中 PM_{10} 质量浓度季节变化相对较小。吉大点的 PM_{10} 季节变化呈现出夏季低、秋春季高的趋势。

2.3 不同季节 PM_{10} 的日均小时质量浓度变化

图 4 给出了夏、秋、冬和春四季 3 个站点 PM_{10} 的日均小时质量浓度变化状况。

由图 4 可以看出,不同季节 PM_{10} 的小时变化是不

一致的。图 4(a)是夏季 3 个点的 PM_{10} 小时质量浓度变化图。其中吉大点的 PM_{10} 变化趋势类似,即早晚(0—6:00,18:00—24:00)低,白天(6:00—18:00)高,这主要是由于类似机动车、易散性粉尘等颗粒物源在白天释放的颗粒物相对较多的缘故,此外夏季白天的日照充足,机动车源释放的 NO_x 和天然植被释放的 VOC(挥发性有机物)较多,容易经光化学反应形成颗粒物,导致 PM_{10} 质量浓度偏高。前山点 PM_{10} 的质量浓度变化也是白天高、早晚低,但是在 8:00 和 19:00 左右质量浓度出现 2 个峰值,这可能主要与前山站点附近有众多的工厂有关,早晚的 2 个峰值指示早晚上下班的 2 个高峰时期,此时人、车流量大,造成 PM_{10} 质量浓度偏高。香洲点的 PM_{10} 日均小时质量浓度变化不大,在 8:00 和 19:00 出现 2 个不太明显的高值,表明该站点附近无显著的人为排放源,其浓度变化可能主要受城市的背景浓度变化控制。此外,对比 3 个站点的 PM_{10} 质量浓度,前山点的 PM_{10} 明显高于另外 2 个站点,这主要是由于工业源排放较多的颗粒物,导致其质量浓度较高。

图 4(b)是秋季的 PM_{10} 日变化状况,可以看出在 9:00,13:00 和 18:00 左右出现高值,这对应于居民活动的 3 个高峰期,表明该点的 PM_{10} 主要是受居民活动

的影响。3 个点的 PM_{10} 变化类似于夏季的 PM_{10} 变化,也是白天高、晚上低。这也与前面的月平均质量浓度变化相一致,即夏、秋季的影响因素相似,导致 PM_{10} 的日变化类似。

图 4(c)是冬季的 PM_{10} 日变化状况。香洲和吉大点的 PM_{10} 变化也是白天高、夜晚低,但白天与夜晚的质量浓度相差较大,且白天 PM_{10} 的变化幅度较大,这表明该点受到多种因素的复杂影响,包括颗粒物排放源和气象因素的影响。前山 PM_{10} 的变化形式完全不同于夏、秋季的 PM_{10} 变化,也不同于冬季其他 2 个站点 PM_{10} 变化,它呈现出早晚高、白天低的模式,并且变化幅度较大,早晚与白天的峰值差异超过 $20 \mu\text{g}/\text{m}^3$ 。出现这种形式的原因是否与该点附近的工业源的不规则排放有关(如白天工厂的颗粒物除尘效率高、晚上可能在无除尘控制条件下排放烟尘),还需要进一步讨论。

图 4(d)是春季的 PM_{10} 日变化状况。春季香洲和吉大点的 PM_{10} 变化也是白天高、夜晚低。但它们 PM_{10} 略高于前山的 PM_{10} 值,这可能主要与春季城外颗粒物输送至这 2 个站点有关。前山 PM_{10} 的变化与前面的变化形式都不同,是由 0:00 开始至 12:00 呈逐渐下降趋势,12:00—24:00 则变化平缓。

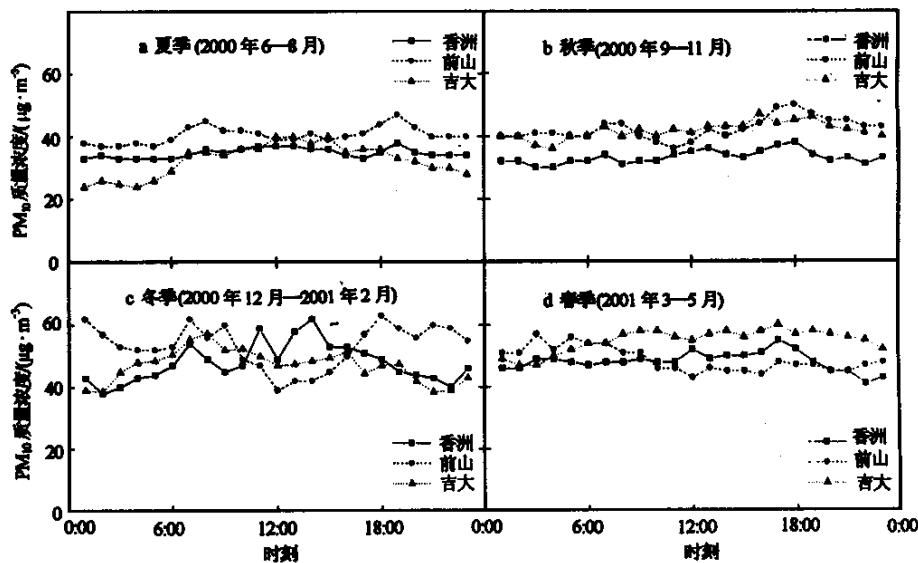


图 4 2000 年 6 月—2001 年 5 月香洲、前山和吉大站点的 PM_{10} 的小时变化图

Fig.4 Hourly variations of PM_{10} at Xiangzhou, Qianshan and Jida stations from June 2000 to May 2001

3 结论

通过对珠海香洲、前山和吉大 3 个站点 2000 年 6 月—2001 年 5 月 PM_{10} 小时质量浓度的统计分析表明:

a. 3 个点的 PM_{10} 年均质量浓度为 39, 44, 36 $\mu\text{g}/\text{m}^3$, 平均为 $40 \mu\text{g}/\text{m}^3$, 校正后为 $52 \mu\text{g}/\text{m}^3$, 低于国家 PM_{10} 的二级质量标准。相比而言, 珠海 PM_{10} 低于武汉、

兰州和重庆与国外一些空气质量好的城市(洛杉矶、巴黎和米兰)相近。

b. 香洲点 4 月 14 和 15 日的 PM_{10} 日均值分别为 $92,127 \mu\text{g}/\text{m}^3$, 对比香港的 PM_{10} 以及北方粉尘源区榆林站点的 TSP 质量浓度及气团轨迹分析结果可知, 珠海的大气颗粒物在春季受到了北方沙尘暴的影响。

c. 3 个点 PM_{10} 月平均质量浓度变化一致, 即夏秋季(6—11 月) PM_{10} 低, 冬春季高。

d. PM_{10} 日变化以白天高、夜晚低为主, 但不同季节的变化不完全一致。香洲点夏、秋季小时质量浓度变化不大, 但在冬季的白天出现明显的峰值, 与夜晚的 PM_{10} 质量浓度差别显著。前山点夏、秋季小时质量浓度主要在 9:00 和 18:00 左右出现峰值, 对应于城市居民活动的 2 个高峰期, 但其冬、春季的变化形式则明显不同, 这主要与附近的工业颗粒物排放源有关。吉大点 PM_{10} 四季的小时质量浓度主要在 9:00 和 13:00 左右出现高值, 表明了人为活动的影响。

致谢: 中国气象科学研究院郑向东博士提供气团轨迹分析的结果。

参考文献:

- [1] David Muir. New directions :The suitability of tapered element oscillating microbalances(TEOMs) for PM_{10} monitoring in Europe :The use of PM_{10} data as measured by TEOM for compliance with the European Air Quality Standard[J]. Atmos Environ, 2000, 34: 3209–3211.
- [2] Ayers G P, Keywood M D, Gras J L. TEOM vs manual gravimetric methods for determination of $PM_{2.5}$ aerosol mass concentrations[J]. Atmos Environ, 1999, 33: 3717–3721.
- [3] King A M. New directions :TEOMs and the volatility of UK non-urban PM_{10} :a regulatory dilemma?[J]. Atmos Environ, 2000, 34: 3210–3212.
- [4] Wei F, Teng E, Wu G, et al. Ambient concentrations and elemental compositions of PM_{10} and $PM_{2.5}$ in four Chinese cities[J]. Environ Sci Technol, 1999, 33: 4188–4193.
- [5] Blanchard C L, Carr E L, Collins J F, et al. Spatial representativeness and scales of transport during the 1995 integrated monitoring study in California's San Joaquin Valley[J]. Atmos Environ, 1999, 33: 4775–4786.
- [6] Ruellan S, Cachier H. Characterisation of fresh particulate vehicular exhausts near a Paris high flow road[J]. Atmos Environ, 2001, 35: 453–468.
- [7] Marazzan G M, Vaccaro S, Valli G, et al. Characterisation of PM_{10} and $PM_{2.5}$ particulate matter in the ambient air of Milan (Italy)[J]. Atmos Environ, 2001, 35: 4639–4650.
- [8] Harrison R M, Deacon A R, Jones M R. Sources and processes affecting concentrations of PM_{10} and $PM_{2.5}$ particulate matter in Birmingham, UK[J]. Atmos Environ, 1997, 31: 4103–4117.
- [9] Pellizzari E D, Clayton C A, Rodes C E, et al. Particulate matter and manganese exposure in Toronto, Canada[J]. Atmos Environ, 1999, 33: 721–734.
- [10] Zhang X Y, Gong S L, Richard Arimoto, et al. Characterization and temporal variation of Asian dust aerosol from a site in the northern Chinese deserts[J]. J Atmos Chem, 2003, 44: 241–257.
- [11] Fang M, Zheng M, Wang F, et al. The long-range transport of aerosols from northern China to Hong Kong—a multi-technique study[J]. Atmos Environ, 1999, 33: 1803–1817.
- [12] Cao J J, Lee S C, Zheng X D, et al. Characteristics of Hong Kong aerosols during the dust storm in April 1998[J]. Water Air Soil Pollut, 2003, (3): 213–229.

(上接第 5 页)

- [6] 陆钟武. 论钢铁工业的废钢资源[J]. 钢铁, 2002, 37(4): 66–70.
- [7] 陆钟武. 钢铁产品生命周期的铁流分析——关于铁排放量源头指标等问题的基础研究[J]. 金属学报, 2002, 38(1): 58–68.
- [8] Côté R P. Exploring the analogy further[J]. J Industrial Ecology, 1999, 3(2/3): 11–12.

- [9] 陆钟武, 蔡九菊, 于庆波, 等. 钢铁生产流程的物流对能耗的影响[J]. 金属学报, 2000, 4(4): 370–378.
- [10] 刘丽儒, 陆钟武, 于庆波, 等. 烧结法氧化铝生产流程中物流对能耗的影响[J]. 东北大学学报(自然科学版), 2002, 23(10): 944–947.