北京市城近郊区地下水的环境同位素研究

王新娟^{1,2}, 谢振华², 李世君^{1,2}, 崔亚莉¹, 邵景力²

- 1. 中国地质大学(北京) 水资源与环境学院,北京 100083
- 2. 北京市地质工程勘察院 水资源研究所,北京 100037

WANG Xin-juan^{1,2}, XIE Zhen-hua², LI Shi-jun^{1,2}, CUI Ya-li¹, SHAO Jing-li¹

- 1. School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China
- $2.\ Department\ of\ Geological\ Engineering\ Investigation\ of\ Beijing\ ,\ Beijing\ 100037\ , China$

WANG Xin-juan ,XIE Zhen-hua ,LI Shi-jun ,et al. A study of environmental isotopes in groundwaters near the suburbs of Beijing. $Earth\ Science\ Frontiers\ ,2006\ ,13(1)\ ;205-210$

Abstract: We have studied the evolution of groundwaters in the Yongding River Plain near the suburbs of Beijing, using stable isotope geochemistry. We collected fifteen groups of samples along the flow direction of groundwater in the pluvial and alluvial fans of the Yongding River. The contents of deuterium, oxygen, tritium and ¹⁴C, were measured, and the ages calculated. By analyzing the changes in the ¹⁴C age and in the content of tritium of the groundwaters along vertical and horizontal directions, we can calculate the flow velocity. The calculated flow velocity ranges from 62. 63 m/a to 5.02 m/a. The flow velocity in the superficial aquifer decreases gradually from the piedmont to the plain, as does the shallow subsurface runoff. The groundwater cyclic variations occur mainly vertically in the near-surface aquifer, and horizontally in the deeper aquifer. One of the main tasks of this study is to understand the relationship between the content of deuterium and oxygen in order to judge the origin of the groundwaters.

Key words: groundwater; environmental isotopic method; ¹⁴C age; Yongding River

摘 要:应用环境同位素方法,研究北京城近郊区地下水演化规律。沿北京市永定河冲洪积扇地下水流动方向取样 15 组(D、 ^{18}O 、T、 ^{14}C 及全分析),对所取水样进行 D 、 ^{18}O 、T 、 ^{14}C 分析,并确定地下水同位素年龄。运用地下水 ^{14}C 和 T 含量在垂向和水平方向变化的结果,验证了地下水的流向并计算了地下水的流速变化范围为 $5.02\sim62.63~\mathrm{m/a}$,从山前至平原浅层地下水径流速度逐渐变小,反映了地下水水平径流强度逐渐减弱,地下水交替逐渐变差,浅层孔隙水以垂向交替为主,深层孔隙水以水平径流为主。对地下水 D、 ^{18}O 之间的关系进行分析,从而判断地下水的补给来源等。

关键词:地下水;环境同位素方法;¹⁴C年龄;永定河

中图分类号:P641.8;P597 文献标识码:A 文章编号:1005-2321(2006)01-0205-06

水资源是人类赖以生存和发展的最基本的物质条件之一。北京地处半干旱地区,是世界上最缺水的城市之一。水资源与水环境问题已成为北京市21世纪可持续发展的主要制约因素之一。近年来,北京市已进入建国以来最严重的枯水期,遭遇了连

续 5 年干旱。因此,开展北京市地下水可持续利用调查研究工作,具有十分重要的现实意义和战略意义。本次研究是利用环境同位素作为手段研究北京市城近郊区永定河流域地下水的时空演化规律,为北京市地下水管理和可持续利用提供理论依据。

收稿日期:2005-10-31;修回日期:2005-11-21

基金项目:中国地质调查局国土大调查项目:华北平原地下水可持续利用调查评价项目(200310400002)

环境同位素分析方法是研究地下水运动规律的重要方法之一。据国内外研究应用证明,测试环境同位素对确定地下水补给源、补给、径流、排泄关系、年龄、流向、流速和补给量是很有意义的[1]。例如:巴黎盆地地下水系统是一个经典的应用¹⁴C研究范例^[1-2]。我国华北平原第四系含水层的 &D 和 & ¹⁸O 关系在大气降水线附近,利用此关系确定了华北平原地下水补给主要为大气降水补给^[3-4]。

1 研究区概况

北京地区地层除缺失上中奥陶统、志留系、泥盆 系、下石炭统和三叠系外,其余地层均有分布,其中 以太古宇、上古生界二叠系、中生界侏罗系和第四系 分布最广。太古宇变质岩在东部密云、怀柔大面积 出露,震旦系地层在全区均有分布,为海相碳酸盐岩 及碎屑岩为主的沉积岩,并夹有多层火山喷发岩:下 古生界(-€₁--O₁)以海相沉积的碳酸盐岩和碎屑岩 为主,多出露干西山区和北山区:上古生界 (C_2-P) 为陆相、海陆交互相的碎屑岩夹煤层,仅在西山区出 露。中生界以侏罗系分布最广,西山、北山区均有大 面积出露,为一套火山岩为主的陆相喷发和沉积岩 系:白垩系仅见下统,为陆相碎屑岩。新生界地层主 要分布于平原区,第三系为陆相碎屑岩夹数层玄武 岩,多伏干第四系之下,地表出露较少;第四系广泛分 布于平原区,除山前分布有少量的残坡积层外,大都 为冲洪积层,由松散的砂、砾石层、粘土层互层组成。

北京市城近郊区主要由永定河冲洪积扇及冲积平原组成,永定河冲洪积扇地区地处华北平原的西北端,地势由西北向东南倾斜,地面高程 100~45 m,冲洪积扇顶部地形坡度 3‰,至南部坡度为 1‰。第四系沉积规律主要受永定河河道变化的影响,八宝山以北地区,第四系沉积厚度可达 200 m 以上。含水层的主要作用是接受大气降水、河谷潜流水、山前侧向径流水、河渠、灌溉及人工回灌水的入渗补给,水在含水层中传输运移,经历许多水文循环过程。植被吸收、蒸发、包气带消耗、人工开采等在系统中均可产生不同作用。

2 环境同位素特征

2.1 碳同位素特征

放射性再發素可作为测年工具,尽管在对它们

的解释方面还存在很多局限性,但水相碳中,¹⁴C的 含量是推算地下水年龄最有效的记年计[5-6]

2.1.1 取样与测试

样品的采集:为了测定地下水¹⁴C同位素年龄,从门头沟麻峪至大兴凤合营水厂沿一个剖面采集地下水样品,如图 1 所示,取样点剖面与永定河成一定角度相交,基本上是沿永定河冲洪积扇地下水的流

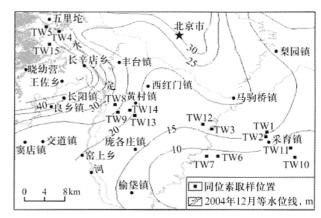


图 1 同位素取样点分布图

Fig. 1 Sampling locations for isotopes

向布置了 15 组取样点。取样层位既有浅层孔隙水(埋深 $0\sim50$ m),又有深层孔隙水($50\sim300$ m),还有隐伏基岩水。

样品的测试:委托中国地震局地质研究所地震动力学国家重点实验室进行测定,采用液体闪烁计数法,测定结果的校正采用树轮校正法。测试精度可达 $1\%\sim2\%$ 。

2.1.2 结果分析

(1) 地下水¹⁴C年龄垂向变化规律。从同位素取样剖面图上可看出,地下水¹⁴C年龄随深度增加而增大,深层孔隙水比浅层孔隙水¹⁴C年龄大。如在青云店取样点,埋深 20~40 m 的浅层水样 TW12(青云店粮库院内)¹⁴C年龄(校正)为2 330 a,即为现代的入渗水与"古水"的混合水;80~100 m的深层水样TW3(青云店人民政府院内)¹⁴C年龄(校正)为13 420 a,以"古水"为主;深层水比浅层水的年龄老11 090 a。安化集团取样点,20~40 m 的浅层水样TW7(安化集团 2 号墙外西边)¹⁴C年龄(校正)为3 220 a,即为现代的入渗水与"古水"的混合水;80~305 m 深层水样TW6(安化集团院内)¹⁴C年龄(校正)为3 220 a,即为现代的入渗水与"古水"的混合水;80~305 m 深层水样TW6(安化集团院内)¹⁴C年龄(校正)为19 080 a 以"古水"为主;深层水比浅层水的年龄老15 860 a。采育取样点,20~40 m 浅层水样TW2 ¹⁴C 年龄(校正)为4 900 a,即为现代的入渗水

与"古水"的混合水; $272 \sim 284 \text{ m}$ 深层水样 TW1 14 C 年龄(校正)为 15~380 a 以"古水"为主; 深层水比浅层水的年龄大 10~480 a (如图 2~所示)。

(2)地下水¹⁴C年龄水平变化规律。由于取样点 剖面与永定河成一定角度相交,基本上是沿永定河 冲洪积扇地下水的流向。沿着地下水的流向自西北 向东南,¹⁴C年龄(校正)逐渐增大(如图 3 所示)。对 于浅层孔隙水,在门头沟麻峪的水样 TW5 的14C年 龄(校正)为 730 a,在芦城水务站院内的水样 TW8 为 1 110 a, 在大兴水厂(黄村)的水样 TW13 为 1715 a, 在青云店粮库院内的水样 TW12 为 2 330 a,在安化集团 2 号墙外西边的水样 TW7 为 3 220 a,在采育北营葡萄园浅层的水样 TW2 为 4 900 a。对于深层孔隙水,在青云店人民政府院内 的水样 TW3 14C年龄(校正)为 13 420 a,在安化集 团院内的水样 TW6 为 19 080 a,在采育的水样 TW1 为 15 380 a,在凤合营水管站的水样 TW10 为 22 480 a。整个的变化趋势是逐渐增大,在采育 取样点出现异常,初步判断原因是由干深层取水 使得浅层水与深层水之间建立了水力联系,浅层 水补给到深层水中使后者的年龄变小。不论是浅 层还是深层总的变化规律与研究区水文地质条件 基本一致。

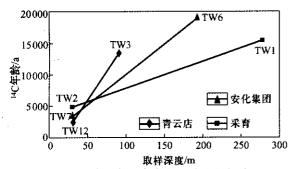


图 2 地下水¹⁴C年龄的垂直变化规律图

Fig. 2 Vertical changes in groundwater ¹⁴C age

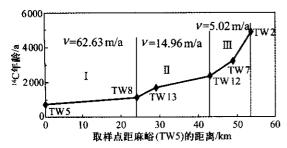


图 3 地下水¹⁴C年龄水平变化规律图

Fig. 3 Horizontal changes in groundwater ¹⁴C age I — 冲洪积扇上部; II — 冲洪积扇中部; 万方数排; 决积扇下部; v—径流速度

(3)地下水流速的估算。在冲洪积扇的上部多为砾石、卵石等,岩层透水性好,地下径流强烈;向外过渡为砾及砂为主;没入平原的部分则为砂与粘性土的互层,随着颗粒变细,透水性变差,地下径流受阻。在剖面上量出两个取样点之间的距离比上两点地下水同位素年龄之差,就可以求得地下水的平均流速。按照水文地质条件把研究区永定河冲洪积扇分为三个区(如图 3 所示)。

从麻峪到芦城水务站 1 取样点是冲洪积扇的上部,为单一潜水含水层,由¹⁴C 年龄求出的地下水径流平均速度为 62.63 m/a;由芦城水务站 1 至青云店粮库院内取样点是冲洪积扇的中部,为双层含水层,由¹⁴C年龄求出的浅层地下水平均径流速度为 14.96 m/a;由青云店粮库院内至凤合营水管站是冲洪积扇的下部,为多层含水层,由¹⁴C年龄求出的浅层地下水平均径流速度为 5.02 m/a。如图 3 所示:从山前至平原浅层地下水径流速度逐渐变小,反应地下水水平径流强度逐渐减弱。整个冲洪积扇的平均径流速度是 27.54 m/a。地下水径流良好。

(4)地下水化学特征。在这个剖面上取的水样, 其水化学和同位素特征必然存在着一定的分布规

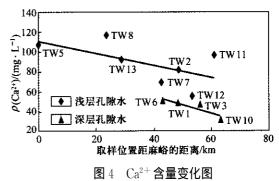


Fig. 4 Changes in Ca²⁺ contents

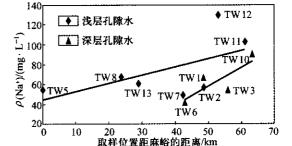


图 5 Na+含量变化图

Fig. 5 Changes in Na⁺ contents

律。由冲洪积扇的扇的顶部至扇缘,地下水的矿化度应该逐渐升高。具体来说,地下水的 Ca^{2+} 和 HCO_3 含量应逐渐降低, Na^+ 和 Cl^- 含量应逐渐升高。图 4 和图 5 分别是对取样剖面上浅层孔隙水和深层孔隙水的 Ca^{2+} 和 Na^+ 含量变化图,基本反映了这一变化趋势。对于同位素,剖面上所取水样中放射性同位素含量由扇的顶部至扇缘应该逐渐降低,地下水年龄应逐渐变老。 14 C年龄在水平方向的变化规律是地下水从冲洪积扇的上部到下部水平径流运动的一个反映。从另一个角度说,在径流过程中,地下水水化学成分特征也应该有相应的变化规律。同位素与水化学成分的变化规律应基本一致,下面举例研究 14 C年龄与 Ca^{2+} 含量之间的相关关系(如图6 所示)。从图6 可看出,不论是对基岩裂隙水、浅层孔隙水还是深层孔隙水,地下水 14 C年龄与 Ca^{2+} 含

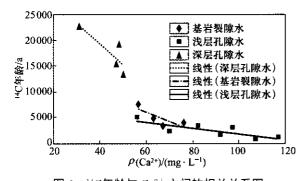
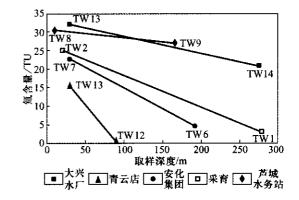


图 6 14 C年龄与 Ca^{2+} 之间的相关关系图 Fig. 6 The correlation of 14 C age and Ca^{2+}


量之间呈较好的线性关系。分别对浅层孔隙水、基岩裂隙水和深层孔隙水求出其 14 C年龄与 Ca^{2+} 含量之间的相关系数: $r_{ik}=-0.8295$, $r_{ik}=-0.8128$, $r_{ik}=-0.8460$ 。总体的相关系数 r=-0.8134。由此可见,不论是对浅层孔隙水,基岩裂隙水还是深层孔隙水,其相关系数的绝对值都较大,并且有较好的一致性,即总体的相关系数也较大。相关系数小于零,表明两者成负相关,即随着 14 C年龄增加 Ca^{2+} 含量降低,这与从冲洪积扇的上部到下部由于地下水的水平径流, 14 C不断衰变,地下水同位素年龄逐渐升高,且矿化度逐渐增加, Ca^{2+} 含量逐渐降低的规律一致。同位素规律与水化学特征相互验证。

2.2 氢氧同位素

2.2.1 地下水氚特征

地下水中的氚含量取决于含水层的补给来源、 埋藏及径流条件。一般潜水和浅层承压水属于现代 循环水,其流**为量**较高,深层承压水属于停滞水,不 含氚[7]。

(1) 地下水中氚含量在垂向上的变化规律。在 冲洪积扇的中上部,浅部的松散孔隙水中的氚含量 普遍高于深部的基岩裂隙水中的氚含量。例如,芦 城水务站取样点,取样深度 $0 \sim 20 \text{ m}$ 时(芦城水务 站院内 TW8) 3 H = 30.56 TU,取样深度 30~300 m 时(芦城水务站南 1 800 mTW9) 3 H = 27.21 TU: 大兴取样点,取样深度 $20\sim40~\mathrm{m}$ 时(大兴黄村水厂 $TW13)^3H = 32.08 TU,$ 取样深度 $50 \sim 500 m$ 时 (大兴义和庄 TW14)3H = 20.96 TU。但不论是浅 部的松散孔隙水还是深部的基岩裂隙水都属于大气 溶滤水,其氚含量都在 $5\sim40~\mathrm{TU}$ 之间,属于新近入 渗水与"古水"形成的混合水。在冲洪积扇的中下 部,地下水都属于松散孔隙水,但浅层水与深层水之 间的氚含量相差一个到两个数量级,浅层水的氚含 量都在 $5\sim40~\mathrm{TU}$ 之间,而深层水的氚含量在 $0\sim5$ TU 之间。例如,青云店取样点,取样深度 $20 \sim$ 40 m 时(青云店粮库院内 TW12)³ H = 15.58 TU, 即为现代的入渗水与"古水"的混合水,取样深度80 $\sim 100 \text{ m}$ 时(青云店人民政府院内 TW3) 3 H = 0.51 TU,以"古水"为主:安化集团取样点,取样深度 20 $\sim 40 \text{m}$ 时(安化集团 2 号墙外西边 TW7) 3 H = 22.90 TU,即为现代的入渗水与"古水"的混合水, 取样深度 $80\sim305 \text{ m}$ 时(安化集团院内 TW6) 3 H = 4.71 TU,以"古水"为主:采育取样点,TW2点,取 样深度 $20\sim40~\text{m}$ 时 $^3\text{H}=25.26~\text{TU}$,即为现代的入 渗水与"古水"的混合水、TW1点、取样深度 $272\sim$ 284 m 时³ H = 3.11 TU,以"古水"为主(如图 7 所示)。

(2)地下水中氚含量在水平方向的变化规律。 浅层孔隙水氚含量在水平方向的变化规律(如图 8 所示)。氚含量在水平方向逐渐降低,但是并不严格 递减,而是在总体下降的情况下在趋势线上下波动。 取样剖面上整个浅层孔隙水的氚含量都在 15~35 TU 之间,都属于 40 a 以内由大气降水形成的现代 水。说明在整个冲洪积扇流域范围内大气降水与地 下水之间的水力联系密切,水循环以垂直交替为主。 氚含量的总体降低是因为大气降水由山前至平原逐 渐减少,氚含量的波动由局部的大气降水的强度变 化造成的。即总的来说浅层地下水垂向交替强度由 山前至平原逐渐减弱。

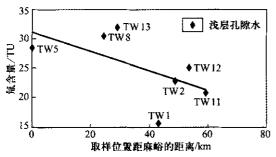


图 8 地下水中氚含量在水平方向的变化规律图 Fig. 8 Horizontal changes in tritium

(3)δD-δ ¹⁸O关系。H. Craigh 将大气降水中的 δD 与 δ ¹⁸O的关系归纳为如下表达式:δD=8δ ¹⁸O+10。

这就是许多文献中所称之的 H. Craigh 降水直 线方程,并可用作图法加以表示。H. Craigh 降水直 线是利用氢、氧稳定同位素来判定和解决一系列水 文地质问题的原理和方法基础[8]。图 9 就是由同位 素取样分析得到的永定河冲洪积扇地下水同位素 δD-δ¹⁸()关系图。由图可看出,不论是浅层孔隙水, 基岩裂隙水还是深层孔隙水,其值都处于北京大气 降水关系直线附近。即被测定的水最初主要是来源 于本地大气降水。下面分别对浅层孔隙水、基岩裂 隙水还有深层孔隙水求出其 ∂D 和 ∂ ¹8O之间相关系 数: $r_{\mathbb{k}} = -0.8295$, $r_{\mathbb{k}} = -0.8128$, $r_{\mathbb{k}} = -0.8460$ 。 由此可看出浅层孔隙水中 ∂D 和 ∂ ¹8O的相关系数较 大,即满足较好的线性关系,说明浅层孔隙水以大气 降水来源为主,水循环以垂向循环为主。对于基岩 裂隙水和深层孔隙水其相关系数较小,说明其中的 δD 和 δ 18O并不满足很好的线性相关关系,即其中 直接来源于大气降水的水不占很大比例,水循环以 侧向补给为主。

3 结论与建议

直方向上由浅部至深部逐渐增大。由¹⁴C年龄计算出的浅层地下水径流速度由山前至平原逐渐减小,反映地下水水平循环强度逐渐减弱。相应地氚含量在垂向上由浅部至深部逐渐减小;水平方向上由山前至平原逐渐减小,说明地下水在垂向上循环程度逐渐减弱;浅层地下水以垂向交替为主,深层地下水和基岩裂隙水以水平径流为主。越靠近下游平原或含水层埋深越大,地下水交替越差,应慎重开采以达到地下水可持续利用目的。由 δD 和 δ ¹⁸O含量关系

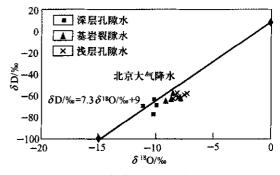


图 9 取样点 δD-δ ¹⁸O关系图 Fig. 9 Plot of δD vs δ ¹⁸O

的分析可知,研究区地下水最初要来源于本地大气 降水,深层地下水和基岩裂隙水主要来源于侧向补 给。

北京市作为首都严重缺水,用水以地下水为主, 地下水开采量占全市总供水量的 2/3 左右,而地下 水主要来自大气降水补给。由于连续几年干旱,地 下水不能及时得到补给,地下水已出现超采甚至部 分地区出现严重超采。为实现北京市地下水可持续 利用,必须采取措施控制地下水的过量开采,恢复地 下水的自我平衡能力。

References:

- [1] LIU Cunfu. Foundation of environmental isotopic hydrogeology [M]. Wuhan: Teaching and research section of hydrology and enjineering geology, wuhan college of Geology, 1984:21-27 (in Chinese).
- [2] MAZOR E. Chemical and isotopic groundwater hydrology
 [M]. New York: Marcel Dekker Inc, 1997:413.
- [3] IAEA. Proceedings of a regional executive management seminar on isotope techniques in water resources development and management and a regional workshop on isotope hydrology for Asia and the Pacific organized by the IAEA[R]. Beijing, 15-16 June, 1987.
- [4] WEN Dongguang. Groundwater resources attribute based on

- environmental isotopes [J]. Earth Science, 2003, 27 (2): 141-146(in Chinese).
- [5] CLARK I D, FRITZP. Environmental isotopes in hydrology [M]. New York: Lewis Publishers, 1997.
- [6] WANG Xinyan, MA Teng, GUO Qinghai, et al. Groundwater and environmental change [J]. Earth Science Frontiers, 2005, 12(Suppl):14-21(in Chinese).
- [7] WAN Junwei, LIU Cunfu, Chao Nianying, et al. Theory and practice of isotopic hydrogeology[M]. Wuhan: China University of Geosciences Press, 2003: 195-203 (in Chinese).
- [8] SHEN Zhaoli. Foundation of hydrogeochemistry M. Beijing: Geological Publishing House, 1990: 102-108 (in Chinese).

参考文献:

- 刘存富. 环境同位素水文地质基础[M]. 武汉:武汉地质学院水 文地质教研室,1984:21-27.
- [4] 文冬光. 用环境同位素论区域地下水资源属性[J]. 地球科学, 2003,27(2):141-146.
- [6] 王焰新,马腾,郭清海,等.地下水与环境变化研究[J].地学前 缘,2005,12(特刊):14-21.
- [7] 万军伟,刘存富,晁念英,等,同位素水文学理论与实践[M],武 汉:中国地质大学出版社,2003:195-203.
- [8] 沈照理. 水文地球化学基础[M]. 北京: 地质出版社, 1990: 102-108.

The Third Editorial Committee of Earth Science Frontiers

A BRIEF INTRODUCTION TO OVERSEA MEMBERS OF THE EDITORIAL BOARD

- Professor of Geophysics, Cairo University, Egypt. His primary research interests are poten-(1) Dr. El-Sayed Mohamed Abdelrahman tial field methods. His research has focused on gravity, magnetic, self-potential methods including depth and shape determination. He has been awarded 5 prizes between 1992 and 2003, including the state prize in Earth sciences, the state prize in advanced technological sciences and the others.
- (2) Dr. Norman Bleistein Emeritus Professor of Geophysics, Colorado School of Mines, USA. His primary research interests: asymptotic methods for forward modeling and inversion in seismic exploration. He is a Fellow of the Institute of Physics, UK., and Guest Professor, China University of Geosciences, Wuhan, China.
- (3) Dr. Gregory A. Davis Professor of Earth Sciences, University of Southern California, USA. Guest Professor, China University of Geosciences, Beijing. His research efforts are primarily in the area of tectonics and are largely field-based. He was the recipient in 2003 of a Career Contribution Award from the Division of Structural Geology and Tectonics, Geological Society of America, and of an Achievement Plaque in Structural Geology and Tectonics from China University of Geosciences, Beijing,
- (4) Dr. Yaoling Niu Chair Professor of Earth Sciences, University of Durham, UK. He uses petrology and geochemistry as a means to understanding how the Earth works. He studies rocks formed beneath ocean floor, in mantle wedges, in subduction zones, and during continental collision. He was honoured as an "Outstanding Overseas Chinese Scientist" by Chinese National Science Foundation, serves as an Executive Editor of Chinese Science Bulletin, and has recently taken the Chairmanship of "Commission on Solid Earth Composition and Evolution" of IUGS.
- (5) Dr. Franco Pirajno He is a Project Manager and research geoscientist with the Geological Survey of Western Australia, Australia. His professional interests are the study of hydrothermal systems, regional tectonics and metallogeny and the conceptual modelling of ore systems. Before joining the Geological Survey, he was Professor of Economic Geology at Rhodes University in South Africa.
- (6) Dr. Victor I. Starostin Professor of Geology, Moscow State University, Russia. Doctor of science in geology and mineralogy. He is an Academician of the Russian Academy of Natural Sciences (RAEN). His professional interests are the Geology of Mineral Deposits, Metallogeny, and Structural-Petrophysical Analysis. He was awarded the Smirnov Foundation Diploma for 1995 and Lomonosov Award for 1999
- (7) Dr. Yonghe Sun Geophysicist, ChevronTexaco Corporation, USA. He has worked in both academia and oil industry in US for fifteen years. His research and development interests include seismic wave modeling, surface wave inversion, cross-well tomography, 3D seismic imaging, multiple attenuation, and reflection tomography. He served as an Associate Editor for Geophysics for three years and is currently an Assistant Editor for Geophysics.
- Professor of Geology, Moscow State University, Russia. Doctor of science in geology and mineralogy. He (8) Dr. Victor T. Trofimov is a vice-director of the University and an Academician of Russian Academy of Natural Sciences. His research areas include: Engineering Geology, Ecological Geology, Geological Education. He has been awarded 17 prizes between 1977 and 2003, including Russia State prize, Golden medal of International Academy of Sciences for Nature and Society.
- (9) Dr. Marjorie Wilson Professor of Geology, Leeds University, UK. Her main field of research focuses on the relationship between magmatism and global geodynamics. She is the author of a best selling book "Igneous Petrogenesis" published in 1989, and the Executive Editor of Journal of Petrology, one of the highest ISI citation index journals in the field of Geosciences. In 2000 she was awarded an Honorary Doctorate by the University of Uppsala in Sweden, and is currently a Guest Professor at the China University of Geosciences in Beijing.
- (10) Dr. Dapeng Zhao Professor of Geophysics, Geodynamics Research Center (GRC), Ehime University, Japan. His research and teaching interests include earthquake seismology, seismic tomography, and Earth's deep structure and dynamics. He is the director of GRC Seismology Lab with over 25 people. He got Monbusho scholarship from Japanese Ministry of Education during 1985 to 1991 and Texaco Research Prize in 1992 from California Institute of Technology.
- (11) Dr. Nicholas T. Arndt Professor of petrology-geochemistry at University Joseph Fourier in Grenoble, France. His research interests are mafic and ultramafic volcanic rocks, both modern and Archean; and magmatic ore deposits. He is the director of a European Science Foundation program "Archean Environmental Studies: the Habitat of Early Life", a founding editor of eEarth, an ISI highly cited researcher, member of Academia Europaea, and an elected fellow of the Geochemical Society.
- (12) Dr. An Yin Professor of Earth Sciences, University of California, USA. His research focuses on geologic processes at orogenic and continental scales. His approach is to integrate field investigations with state-of-the-art analytic techniques and mechanical modeling. His goal is to quantify geologic processes and their controlling physical mechanisms. His most recent research interest is to quantify interactions between tectonics and evolution of large river systems at continental scales. He was the recipient of 1994 Donath Medal from the Geological Society of America 万方数据