

北京周边地区沙尘暴时空分布 特征及其环境背景

吕新苗¹，刘惠清²，王文杰^{1,3}，吴绍洪¹

(1. 中国科学院地理科学与资源研究所, 北京 100101;
2. 东北师范大学城市与环境科学学院, 长春 130024; 3. 中国环境监测总站, 北京 100029)

摘要：以 1951~1996 年地面气象记录、90 年代末 TM 影像为主要数据源, 运用气候统计学方法, 在地理信息系统技术的支持下分析了近 50 年北京周边地区(即华北北部)沙尘暴的时空变化特征及其区域差异, 结合遥感影像提取的土地利用和土壤侵蚀信息, 分析了沙尘暴形成的生态环境背景。结果表明: 沙尘暴高值区位于浑善达克沙地和库布齐沙地的周边, 特别是西北部的四子王旗-苏尼特右旗朱日和、二连浩特市-达茂旗满都拉和达拉特旗-准格尔旗-乌拉特中旗。从时间变化看, 午后至傍晚是沙尘暴天气易发的高峰期; 季节变化总体上春季较多, 其次是夏季和初秋; 从年际变化看, 50~60 年代是沙尘暴发生的高值期, 70~80 年代在波动中呈减少趋势, 进入 90 年代后又呈上升趋势, 多发期与干冷气候期相对应。

关 键 词：沙尘暴; 空间格局; 时间变化; 生态环境

中图分类号：P445+.4 **文章编号：**1000-0585(2004)01-0038-07

1 引言

在气象学中, 沙尘天气划分为浮尘、扬沙和沙尘暴三个等级, 沙尘暴是指强风把地面大量沙尘卷入空气中, 空气特别混浊, 水平能见度低于 1km 的天气现象^[1]。美国等国家从 30 年代起, 就开始了沙尘暴研究, 特别是对撒哈拉沙漠沙尘暴天气的研究目前已发展到概念模式阶段, 并对其沙尘的动态变化及沙尘运行路线也有较系统的研究^[2~5]。我国最早是 19 世纪中期地质界开始关注沙尘暴现象和大气粉尘的输送途径, 此项研究始终与黄土高原的形成原因联系在一起; 近代从第四纪地质的角度进一步研究黄土与粉尘沉积^[6]; 自 50 年代气象部门开始对风沙天气进行观测; 70 年代末期, 气候学界开始关注沙尘暴天气; 90 年代后, 特别是 1993 年西北 5·5 特大黑风暴事件和 2000 年华北频繁暴发沙尘暴之后, 沙尘天气灾害引起了国内外学者和政府的广泛关注, 掀起的研究热潮方兴未艾, 分别在历史时期沙尘暴的统计、沙尘暴典型个例分析、沙尘天气气候特征、沙尘暴的发生源地、移动路径和尘降范围、沙尘气溶胶的物理和化学特性、沙尘暴灾害的遥感监测与预报、沙尘暴防治对策等方面取得了可喜进展^[7~12]。关于华北地区的沙尘灾害成因、沙尘迁移路径、防治对策等多有报道^[13~18], 但对本区沙尘暴时空分布较为详细的研究却不多见。本文在区域气象数据和基本空间数据的支持下, 全面分析了近 50 年来华北北部

收稿日期: 2003-05-28; 修订日期: 2003-09-20

基金项目: 中国科学院地理科学与资源研究所知识创新工程领域前沿项目 (CXIOG-A02-03)。

作者简介: 吕新苗 (1976-), 女, 河南南阳人, 在读博士生。主要从事自然地理与全球变化区域响应研究。E-mail: lxym@igsnrr.ac.cn

沙尘暴空间分布规律和不同时间尺度的变化特征，进一步指出了沙尘暴的区域差异，并结合区域土地利用、土壤侵蚀数据，探讨了沙尘暴形成的生态环境背景，从而为协调人类土地利用活动及其方式，改善生态环境提供科学依据。

根据 NOAA 卫星监测的沙尘暴的发生发展过程及对北京周边生态环境直接影响的范围，并考虑行政界线的相对完整性，确定研究区的范围：包括北京市，河北坝上的张家口市、承德市的部分县市，内蒙古自治区中部的呼和浩特市、包头市、锡林格勒盟、乌兰察布盟、伊克昭盟、巴彦淖尔盟、赤峰市 7 个市(盟)及山西、河北与内蒙古的接壤县，共 79 个县(旗、市)，总面积 39.2 万 km^2 ，地理坐标为 $107^{\circ}16' \sim 118^{\circ}29' \text{E}$, $39^{\circ}15' \sim 45^{\circ}25' \text{N}$ 。

2 数据来源与处理方法

本文所用气象数据来自 1951~1980 年气象出版社编辑的地面气象统计资料、1981~1996 年《中国地面气象记录月报》及近两年的沙尘暴个例资料^①。首先统计出历年沙尘暴发生日数及温度、降水等相关气象数据，将这些离散的点状数据通过空间插值的方法实现空间平面化，空间插值选用反距离权插值(IDW)法。由 90 年代初和 90 年代末 TM 影像提取出土地利用和土壤侵蚀信息，把判读后的矢量数据转换成栅格数据，便于和气候数据进行叠加分析。空间数据处理、分析和制图在 ArcView3. 2 和 ARC/INFO8. 1 中完成。

3 沙尘暴的空间分布特征

3.1 沙尘暴年平均日数的空间分布

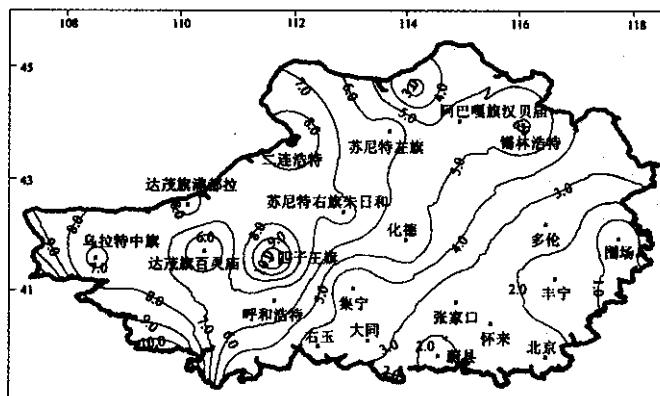


图 1 1951~1996 年平均沙尘暴日数分布图(单位:天)

Fig. 1 Spatial distribution of the average sand-dust storm days (1951 ~ 1996)

本文选用沙尘暴年平均日数(d)来研究沙尘暴的空间分布。统计华北北部 78 个气象站(1951 ~ 1996 年)的沙尘暴年平均日数, 经过插值分析获得其空间分布(图 1)。可以看出, 总的分布趋势是西多东少, 与年降水量分布趋势大体呈负相关。4 个沙尘暴高值区集中在中西部: 中部的四子王旗(11 天/年) - 苏尼特右旗朱日和(7 天/年); 北部的二连浩特市(9 天/年) - 达茂旗满都拉(8 天/年); 西部的达拉特旗(11 天/年) - 准格尔旗 - 乌拉特中

①沙尘暴个例资料摘自中国环境监测总站 2001 年“环境监测快报”。

旗西部(10天/年)。锡林浩特市是东部的相对高值区(6天/年)。北部的阿巴嘎旗那仁宝力格、北京市、河北坝上地区、晋冀蒙交界处和内蒙古东部多伦县为低值区(<5 天/年)。

3.2 不同季节沙尘暴发生的空间分布

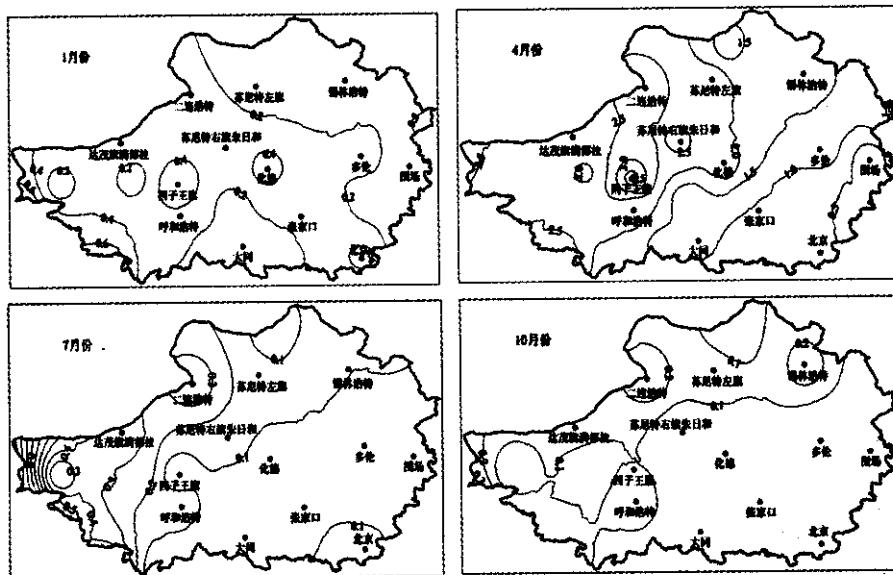


图2 不同季节平均沙尘暴日数分布图

Fig. 2 Spatial distribution of the average sand-dust storm days in different seasons

不同季节沙尘暴发生的几率存在明显的地域差异,冬、春季与全年分布的差异小,而夏、秋季与全年分布的差异大。冬季(1月)除北京市外其他县域与年平均沙尘暴分布类同(图2)。在南部,北京是一个高值区(0.5天/月),中部的四子王旗(0.6天/月)-化德县(0.5天/月)、西部的达拉特旗和乌拉特中后旗(>0.6 天/月)均为高值区,而东部的丰宁县、围场县、锡林浩特市、阿巴嘎旗汉贝庙和苏尼特左旗月沙尘暴的发生小于0.2天,为低值区。春季(4月)沙尘暴的分布与年平均分布相似。仅中部的高值区中心转移至四子王旗和朱日和,中心值分别增加为3.7天/月、2.6天/月,西部仍是本区的高值区(>2.5 天/月)。夏季(7月)东部基本上无沙尘暴发生,仅出现在西部,且月发生的频数高于冬季(>1 天/月)。秋季(10月)东部基本上无沙尘暴发生,而西部和北部有二个沙尘暴中心:锡林浩特市(0.3天/月)、二连浩特市(0.3天/月)。

3.3 沙尘暴分布的区域差异

根据多年沙尘暴平均日数的相似性来进行区域的划分^[8]。沙尘暴日数的相似性反映了其动力机制、发生几率和影响程度上的一致性,也反映了地表覆盖状况的一致性。以沙尘暴日数为主要标志,结合地貌、植被等环境特征,将本区划分为:少发区、较易发区、易发区和频发区(图3),各区的特点见表1。

3.4 沙尘暴空间分布的特点

(1)沙尘暴分布地理纬度高,面积大。沙尘暴日数大于5日的区域西起乌拉特前旗,东

表1 沙尘暴区域分异的特点

Tab. 1 The character of different sand-dust storm regions

分区	沙尘暴日数(d 天)	面积(万 km^2)	占全区面积(%)
少发区	$d < 1$	0.9	2.3
较易发区	$1 \leq d < 5$	15.8	40.3
易发区	$5 \leq d < 8$	15.4	39.3
频发区	$d \geq 8$	7.1	18.1

图 3 沙尘暴区域分异图

Fig. 3 The distribution of sand-dust storms

止锡林浩特市,北起苏尼特左旗,南至准格尔旗,面积约 15.4 万 km^2 ;大于 8 日的面积约 7.1 万 km^2 ,分布在四子王旗、二连浩特、达茂旗满都拉、乌拉特中后旗、达拉特旗和准格尔旗,两者合计共占研究区总面积的 57.4%。沙尘暴面积以浑善达克沙地、阴山北麓面积最大,坝上地区次之。

(2)沙地、沙漠的边缘沙尘暴天气较多。沙尘暴年平均日数大于 5 日的集中在浑善达克沙地、库布齐沙漠和巴丹吉林沙漠的边缘。这些地区沙尘暴年平均日数要大于远离沙漠地区。

4 沙尘暴的时间变化

4.1 沙尘暴的日变化

每天 12~18 时(北京时间,下同)是沙尘暴天气易发的高峰期,其次是午前和夜间,后半夜极少出现沙尘暴。在一天之中,沙尘暴最早出现的时间为 8 时,最晚为 21 时 30 分。沙尘暴发生在上午的占 27.3%,发生在下午的占 61.4%,发生在夜间的占 11.4%。因此春季预报沙尘暴时,要特别注意午后至傍晚过境的冷锋是否会发展为沙尘暴天气。

4.2 沙尘暴的季节变化

沙尘暴发生日数,不仅与大风日数、下垫面性质(土质状况和植被覆盖度等)相关,更为重要的是与大气环流有关。全年沙尘暴发生日数总体上春季(3~5 月)多,夏季和初秋(7~10 月)少。从全区沙尘暴日数的季节变化看,可分为两种类型。

(1)春多秋少型 这种类型沙尘暴发生的最高值出现在春季,最低值出现在秋季。分布在本区的中南部,河北坝上和浑善达克沙地周边。

(2)春多冬少型 这种类型仅出现在本区的北部,二连浩特市、锡林浩特市即属于此种类型,最高值出现在春季,最低值出现在冬季。

4.3 沙尘暴的年际变化

从历年沙尘暴的统计资料可以看出,本区沙尘暴年际变化较大,以达茂旗满都拉为例,1966 年沙尘暴出现 53 天,而沙尘暴最少的年份一般只出现 2~3 天。从北京、朱日和两地沙尘暴日数年际变化曲线图(图 4)可知,沙尘暴日数的年际变化呈阶段性的上升和减少趋势。朱日和 1965~1979 年为沙尘暴的高值年,而 1982~1983 年为低值年,进入 80 年代以

后,大致以5年为周期上下波动。北京1965~1968年为高值年,1984~1996年为低值年。两地沙尘暴年际变化的共同特点是1965年前后是沙尘暴的频发期,之后呈减少趋势,进入80年代以后,沙尘暴日数的年际变化呈大振幅波动式减少,并且沙尘暴较多的年份,对应降水量偏少,气温偏低的年份。

4.4 沙尘暴的年代际变化

除多伦县、化德县、达茂旗百灵庙、大同市等少数地区70年代沙尘暴日数多于60年代外,沙尘暴日数的年代际变化普遍呈减少趋势(表2)。

表2 华北北部代表站不同年代的平均沙尘暴日数

Tab. 2 The average days of sand-dust storms around Beijing Region(1950s ~ 1990s)

代表站	50年代	60年代	70年代	80年代	90年代
多伦	1.4	2.6	5.2	1.9	0.7
化德	4.8	6.4	6.4	5.2	1.5
达茂旗百灵庙	5.6	6.6	4.4	4.1	2.0
乌拉特中后联合旗海流图	8.9	8.0	7.3	3.7	0.5
呼和浩特	12.4	7.7	4.8	1.1	1.2
怀来	5.1	3.0	2.4	0.4	0.2
北京	4.7	4.6	1.4	0.6	0.5
大同	4.2	3.0	6.2	1.3	0.3
锡林浩特	8.6	8.5	6.0	1.8	0.0

5 沙尘暴形成的生态环境背景

强沙尘天气的频发区和重灾区主要位于对全球气候变化最为敏感的受荒漠化危害最重的中纬度干旱、半干旱区(本研究区正位于这一区域)。在全球气候变化的影响下,本区干旱和暖冬现象日益加剧,加之不合理的人为活动,大面积植被遭到破坏,沙化、水土流失、土壤次生盐渍化和土壤物理性质的恶化速度加快,也是强沙尘暴灾害频繁发生的主要原因。

(1)土壤质地状况 全新世新构造运动构成了本区现代地貌轮廓。由于气候趋于干旱,地表植被稀疏,风成地貌分布广泛,从西北向东南,地面物质由粗到细呈现为砾石戈壁-沙漠-黄土的带状分布^[19]。壤质和沙质土壤比例较高,共占研究区总面积的88.7%,细粒物质丰富,加之冬季气温较低,春季气温回升快,经冻融过程表土疏松,地表植被尚未覆盖,这为沙尘暴的形成提供了丰富的沙源。

(2)土地利用/土地覆盖状况 通过90年代初、90年代末土地利用/土地覆盖遥感分析,本区林地和灌木林面积目前占11.4%,草地面积占50.6%,其中退化草地面积达49%。旱作耕地面积比例为17.5%。沙地、盐碱地、裸土等基本无植被覆盖的土地面积占5.6%。

(3)土壤侵蚀状况 通过对土地利用/土地覆盖、降水、地形地貌、表土质地等综合分析,可将本区划分为以风蚀为主要营力的西北区和以水蚀为主要营力的东南区。风蚀为主的区域面积为17.1万km²,水蚀占主导的区域面积为22.1万km²,各占研究区面积的43.6%和36.4%。风蚀为主的区域中,中度风蚀及强度风蚀的面积占27.6%,水蚀占主导

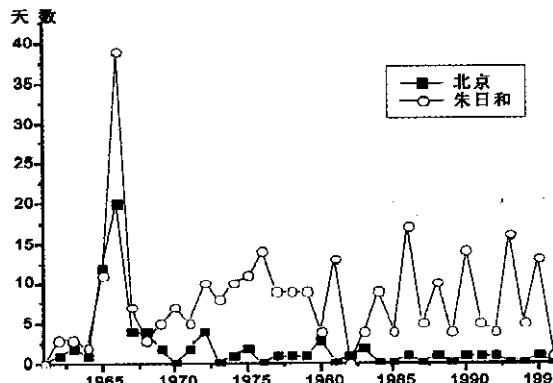


图4 沙尘暴日数年际变化图

Fig. 4 Yearly change of sand-dust storms days (1961 ~ 1996)

的区域中,中度水蚀及强度水蚀的面积占38.6%。

从空间分布看,位于内蒙古的四子王旗、达拉特旗、准格尔旗、正镶白旗、正蓝旗等是风蚀最为严重的区域,这与沙尘暴多的分布区域相一致。河北北部的尚义县、张北县、围场县的北部,也是风蚀较为严重的区域。山西北部以水蚀为主,其中中度及强度水蚀面积占总面积的1/4,因矿山开采带来的水土流失面积占研究区面积的0.5%,加剧了本区的水土流失。北京地区总体来说生态环境质量较好,但由于城市化的发展,工程带来的表土裸露,加之生态恢复不力,是造成地面扬尘的主要原因。

6 结论

本文选择了我国北方农牧交错带的中部地区作为研究范围,采用沙尘暴研究的气候统计法和栅格数据空间分析法对华北北部沙尘暴的时空分布作了详细的探讨,在此基础上分析了其成因,初步形成以下结论:

(1)沙尘暴的发生和发展是在天气过程和沙地沙源共同作用下形成的。本区沙尘暴的空间分布具有纬度高、面积大的特点,总体趋势是西多东少,与年降水量分布大体呈负相关。沙尘暴多发区分散在沙地、沙漠的边缘,浑沙达克沙地、阴山北麓沙尘暴发生的面积最大,坝上地区次之。

(2)从沙尘暴发生日变化、季节变化、年际变化和年代际变化四种不同的尺度进行了时间变化规律分析。全年沙尘暴发生日数总体上春季(3~5月)多,夏季和初秋(7~10月)少,本区沙尘暴年际变化较大,50~60年代是沙尘暴发生的高值期,70~80年代在波动中呈减少趋势,进入90年代后又呈上升趋势,多发期与干冷气候期相对应。

(3)目前,地面观测主要利用气象观测站网,由于气象站点分布得不均匀、不合理,沙尘源区(尤其在沙漠、戈壁地区)气象站点分布非常稀少,甚至一些沙漠腹地往往因交通不便,常常为气象观测的空白区。因此,利用这些稀疏的点状信息,很难准确测量出沙尘暴的空间分布,这给研究带来了很大困难和不确定性。利用遥感技术可以弥补地面观测的这一不足,在大、中尺度全球动态观测研究中较其他空间数据有明显的优势,已成为沙尘暴监测不可缺少的重要手段。

参考文献:

- [1] 张家诚.中国气候.上海:上海科学技术出版社,1985.
- [2] Wolfson N, Matson M. Satellite observations of aphantom in the desert. Weather, 1986, 41(2): 57~60.
- [3] Brazel A J. The relationship of weather types to duststorm generation in Arizona(1965-1980). Journal of Climatology, 1986, 6: 255~275.
- [4] Cautenet G. The impact of Saharan dust over land. part I: Simulation. Journal of Applied Meteorology, 1992, 166~180.
- [5] Franzen L G. The Saharan dust episode of southern and central Europe, and northern Scandinavia March, 1991. Weather, 1995, 50(9): 313~318.
- [6] 史培军,严平,高尚玉,等.我国沙尘暴灾害及其研究进展与展望.自然灾害学报,2000,9(4):71~77.
- [7] 王式功,杨德保,金炯,等.我国西北地区黑风暴的成因和对策.中国沙漠,1995,15(1):19~30.
- [8] 方宗义,朱福康,江吉喜,等.中国沙尘暴研究.北京:气象出版社,1997.
- [9] 张德二,陆风.我国北方的冬季沙尘暴.第四纪研究,1999,5:441~447.
- [10] 庄国顺,郭敬华,袁葱,等.2000年我国沙尘暴的组成、来源、粒径分布及其对全球环境的影响.科学通报,2001,46(3):191~197.
- [11] 申元村,杨勤业,景可,等.中国的沙暴、尘暴及其防治.干旱区资源与环境,2000,14(3):11~14.

[12] 邱新法 ,曾燕 ,缪启龙. 我国沙尘暴的时空分布规律及其源地和移动路径. 地理学报 2001 **56**(3) 316 ~ 322.

[13] 中国科学院兰州沙漠研究所. 北京的风沙及其整治. 中国科学院兰州沙漠研究所季刊第四号. 北京 科学出版社 , 1995.

[14] 叶笃正 ,丑纪范 ,刘纪远 ,等. 关于我国华北沙尘天气的成因与治理对策. 地理学报 2000 **55**(5) 513 ~ 520.

[15] 肖嗣荣 刘学锋 刘芳圆. 河北省沙尘暴时空分布特征及其防治对策研究. 地理学与国土研究 2000 **16**(3) 21 ~ 36.

[16] 陈广庭. 北京强沙尘暴史和周围生态环境变化. 中国沙漠 2002 **22**(3) : 211 ~ 213.

[17] 范一大 ,史培军 ,王秀山 ,等. 中国北方典型沙尘暴的遥感分析. 地球科学进展 ,2002 **17**(2) 289 ~ 295.

[18] 李海萍. 北京周边沙源区沙化土地光谱特征初探. 地理研究 2002 **21**(5) 599 ~ 607.

[19] 刘珍主编. 内蒙古各盟市国土资源概要. 呼和浩特 内蒙古人民出版社 ,1989.

Spatial and temporal distribution characteristics of sand-dust storms around Beijing Region

LV Xin-miao¹ , LIU Hui-qing² , WANG Wen-jie^{1,3} , WU Shao-hong¹

(1. Institute of Geographic Sciences and Natural Resources Research , Chinese Academy of Sciences , Beijing 100101 ,China 2. College of Urban and Environment Sciences , Northeast Normal University , Changchun 130024 ,China 3. China National Environmental Monitoring Centre , Beijing 100029 ,China)

Abstract In North China , an unprecedented heavy sand-stormy weather with high frequency took place in the spring of 2000. Dramatically , it brought direct damage to the region around Beijing , which has aroused even more extensive concern of personages of various circles. Sand-stormy weather research has been widely carried out since then. Therefore , in this paper , based on the climate data from 1951 to 1996 and eco-environmental data , employing climate statistics methods and geographic information sciences(GIS) , the author took the land around Beijing as a case to study its characters of the temporal and spatial pattern in the past fifty years. The annual sand-dust storms day was selected as the major index to divide the region into four districts , then the environmental background was analyzed based on data extracted from the remote sensing images of the 1990s. This research demonstrated the spatial distribution and temporal change of sand-dust storms in this area , leading to the following conclusions : diurnally , afternoon (from 12 p. m. to 18 p. m.) was the period of sand-dust storms ; seasonally spring and late summer were the sand-dust storms most easily happening periods ; interannually , the 1950s to the 1960s witnessed the high value period of the sand-dust storms while the number of the sand-dust storm days tended to reduce in the 1970s and the 1980s but increased in the 1990s again. We also found that the most easily happening period corresponded to the dry and cold climate. As for the spatial distribution , the high value regions were located in the marginal areas of Otindag Sandy Land and Hobq Sandy Land , especially in Siziwangqi-Zhurihe , Erenhot-Damaoqi , Daladqi-Junggarqi-Uradqi.

Key words : sand-dust storms ; spatial and temporal distribution ; ecological environment