订单量平衡算法在首钢京唐热轧横切 MES 的应用

樊艳伟,穆衍清,尤梅枝,牛 巍

(北京首钢自动化信息技术有限公司 信息事业部,北京 100041)

摘要:针对首钢京唐钢铁联合有限责任公司热轧横切 MES 系统,考虑按单生产的轧钢生产特点,为了实现"炼钢—热轧—横切"的全流程生产组织和热轧横切系统订单量的平衡与监控,本文提出了基于京唐钢铁热轧横切的订单平衡算法。实践表明,该算法考虑全面,结果精准,为生产组织和计划排产提供了重要的依据。 关键词:热轧生产线;订单量;横切;MES

0 引言

首钢京唐钢铁联合有限责任公司于 2011 年建设 2 条热轧带钢生产线。热轧生产线设计能力 940 万 t/a,每年共 438.23 万 t 热轧钢卷通过铁路、汽车、海运运出。为了使带钢配送满足更多的用户需求并增加带钢产品附加值,公司决定建设热轧带钢配送中心。配送中心包含两条横切线,一条热轧酸洗线和一条热轧罩退线。

横切 MES 系统由北京首钢自动化信息技术有限公司开发完成,它是热轧带钢配送中心工程的信息化配套系统。横切 MES 系统的核心功能是由信息化系统来综合平衡、优化设定生产销售的模式,进行生产计划排程,并且进行物料跟踪、质量管理和控制。由于轧钢生产涉及的工艺路线比较复杂,中间产品比较多,所以必须在生产的各个环节,监控订单量完成的情况,以保证订单的按时交货并最大程度地减少带出品。

对于横切产线来讲,主要涉及热轧和横切两个工艺步骤,由于物料形态由钢卷变成了横切包,并且一卷可以产出多包,所以订单量的精确计算显得尤为重要。

1 横切订单流程

横切订单作为一个完整的生产订单,整个订单链包括炼钢订单、热轧订单和横切订单三个订单。所以横切订单整体生产流程为:炼钢订单一热轧订单一横切订单。图1为订单流程。

横切订单由四级下发给三级,分为销售订单

和生产订单两种。首先接收销售订单,待销售订单接收成功后,才能进行对生产订单的接收,在此过程中同时展开对订单链的处理。待订单链上的订单全部接收完成后,技术展开才能完成,这时将订单链上的全部订单拼装成电文发送给计划系统,计算理论投料量。这样就保证在四级、三级和计划系统订单中信息的统一。

从整体订单流程上可以看出,横切类似于冷轧,为热轧的下一道生产工序;但横切又有别于目前京唐钢后标准流程,主要体现在以下两点:

- (1) 横切的最终产品都是外销,没有内供下 道工序的情况;
- (2) 横切报产时会像热轧一样给 APS 发摘单 电文,通知 APS 按成品的终判结果去核减投料量 及计算合格报产量。但是在报产后,横切会保留 物料和生产订单的关联,以实现系统内的二次检 验流程。

2 横切 MES 订单量计算方法

横切生产从热轧投人板坯开始,首先针对挂 热轧订单的板坯排制生产计划,经过序列释放、投 料、上料操作后,产出热轧卷。横切业务要求非船 板必须进行性能检验,而船板则不需要,同时对热 轧卷进行表检,最后将终判后的热轧卷报产;报产 后则热轧卷自动挂上横切订单,转储到横切原料 厂,开始横切包的生产。其整个生产过程工艺步 骤复杂,在生产组织的过程中,重点关注实际投料 量和合格报产量,这直接决定了生产计划编制时

收稿日期:2013-04-12;修改稿收到日期:2013-04-24

作者简介: 樊艳伟(1984-), 女, 河北沙河人, 助理工程师, 硕士, 主要从事轧钢系统管理与测试工作。

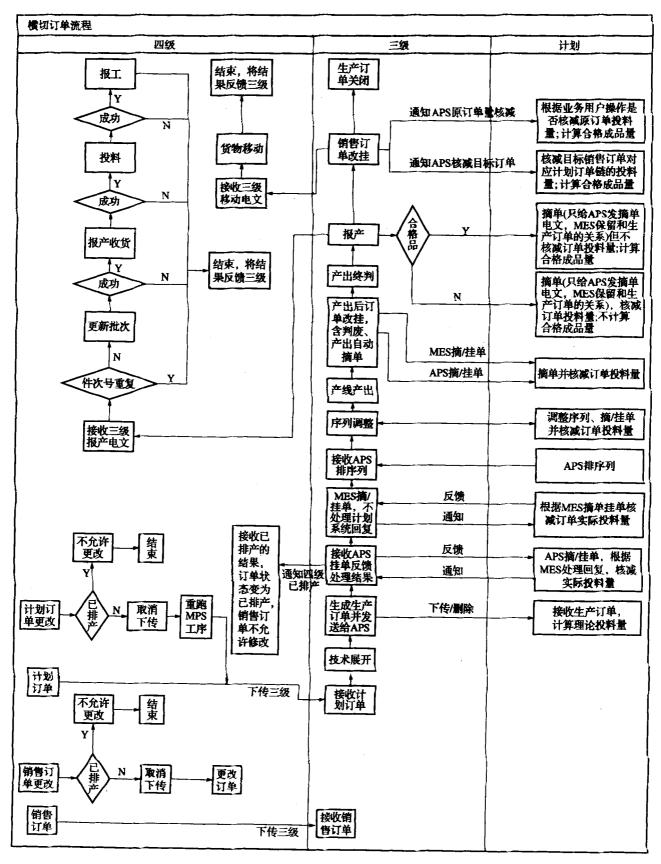


图1 订单流程

对于各工序的投料和备料安排是否准确。 经过北京首钢自动化信息技术有限公司横切

项目团队的不懈努力和反复计算验证,得到横切订单链订单投料量的计算公式如下。

(1)实际投料量

订单的实际投料量计算要考虑整个订单链上 各生产订单的原料和成品的挂料情况,横切订单 链包括热轧和横切两个生产订单。而横切订单的 实际投料量要从热轧 MES 系统和横切 MES 系统 中分别统计。

1) 热轧牛产订单的实际投料量

热轧生产订单的实际投料量包括热轧订单的 原料挂料量和热轧、横切生产订单的成品挂料量 折合到热轧原料的挂料量之和。

首先计算横切生产订单的成品挂单量所折合的原料量 W_{CI}:

$$W_{\text{ci}} = (\sum W_{\text{Pi}} + \sum W_{\text{Pi}})/K_{\text{CUT}}$$
 (1)
式中, W_{Pi} 为横切订单上未报产的横切包重量; W_{Pi} 为横切订单上已报产且终判结果为合格的横切包重量; K_{Cur} 为横切订单的理论成材率。

然后计算横切订单上的原料挂单量 Wa:

$$W_{C2} = \sum W_{COIL1} + \sum W_{COIL2} + \sum W_{COIL3}$$
 (2)
式中, W_{COIL1} 为横切订单上可生产钢卷重量; W_{COIL3} 为横切订单上已计划钢卷重量; W_{COIL3} 为横切订单上生产中钢卷重量。

由于一个钢卷可以产出多个横切包,而对于生产中的钢卷,在其部分产出时,要将横切包折算的原料分摊量减掉,否则会造成重复统计。处于生产中的钢卷,其产出的横切包折算的原料分摊量 Wa为

$$W_{C3} = \sum W_{P3}/K_{CUT}$$
 (3)
式中, W_{P3} 为横切订单上生产中钢卷的子包重量。

根据式(1)、式(2)、式(3),横切系统中横切订单的原料挂料量 M_{RAWI}为

$$\boldsymbol{M}_{\mathrm{RAW}} = \boldsymbol{W}_{\mathrm{C1}} + \boldsymbol{W}_{\mathrm{C2}} - \boldsymbol{W}_{\mathrm{C3}}$$

在热轧 MES 系统中,横切订单的原料挂料量 M_{RAW2} 为

$$M_{RAW2} = \sum W_{COILA}$$
 (4)
式中, W_{COILA} 为热轧系统横切订单上可生产钢卷重量。

由此可得出横切生产订单的原料挂料量为 M_{CRAW} :

$$M_{CRAW} = M_{RAW1} + M_{RAW2}$$

对于热轧生产订单,其成品挂料量 W_{CA}

$$W_{C4} = \sum W_{COIL5}$$
 (5)
式中, W_{COIL5} 为热轧系统横切订单链上热轧订单上
未报产钢卷重量。

热轧订单的实际投料量由成品折合的部分, 其值为 $M_{\rm BAW3}$:

$$M_{RAW3} = W_{CA}/K_{HOT}$$
 (6)
式中, K_{HOT} 为热轧订单的理论成材率。

另外,热轧订单的原料挂料量 M_{RAW4}:

$$M_{RAW4} = \sum W_{SLAB}$$
 (7)
式中, W_{SLAB} 为热轧系统横切订单链上热轧订单上
未消耗板坯重量。

根据式(6)、式(7)的结果,再考虑横切订单 上挂料量所折合的热轧订单原料量可得出热轧生 产订单的实际投料量 W_{IP}:

$$W_{\rm HP} = M_{\rm RAW4} + M_{\rm RAW3} + M_{\rm CRAW} / K_{\rm HOT}$$

2)横切订单的实际投料量

根据热轧订单的实际投料量,考虑热轧的成材率,即可得出横切订单的实际投料量 M_{ce} :

$$M_{\rm CP} = M_{\rm HP} \times K_{\rm HOT}$$

(2)合格报产量——已报产的终判为合格品的成品实重之和

以上为投料量的计算公式,在实际的生产组织中,系统中许多动作都会触发订单量的改变,特别是物料的摘单、挂单等;此外订单量的核减与物料的终判结果和报产状态息息相关,经过梳理,形成如表1所示的结果。

表1 订单量核减逻辑

项目	类型	订单链投料量	合格报产量	
挂单	原料	核碱	不变	
	报产前成品	核减	不变	
	协议品销售订单挂单	不核碱	不变	
	合格品销售订单挂单	核减	增加	
	原料	核减	不变	
	外卖成品	不核域	增加	
摘单	外委协议品	核碱	不变	
	协议品销售订单摘单	不核减	不变	
	合格品销售订单摘单	核减	减少	

从表1可以看出,在中间产品作为原料时,挂单操作会增加目标订单的实际投料量,摘单操作会减少目标订单的实际投料量。对于最终成品,在报产时会通知 APS 计划系统进行订单量的计算,合格品会增加合格报产量的统计,而协议品会核减原料的投料量。在报产后进行销售订单改挂时,合格品摘单要核减原料投料量,并核减合格报产量;对于协议品,因为成品在报产时已经核减了

投料量,所以不需要重新核减。

3 应用效果

横切 MES 系统已于 2011 年 11 月上线运行, 通过上述给出的订单量计算公式,结合订单量核 减逻辑,系统能够实时计算出客户订单当前的实 际投料量和合格报产量,计划员通过这两个量和 订单需求量的比对,就能够实时掌握整个订单链 上关于订单量的变化,从而有选择地排制生产 计划。

生产计划排制如图 2 所示。

序号	选择	订单号	销售订单号	销售订单行项	I	工序名称	状态	理论投料量	已投料量 ▼	产出量	1
1	0	0000653202	0500002284	000050	9220	横切工序	生产中	500000	3411.6314	0	1
. 2	0	0000650983	0500002238	000020	9220	横切工序	己挂料	500000	29463.1577	0	
3	0	0000653200	0500002284	. 000030	9220	横切工序	生产中	500000	2479.0525	0	

图 2 生产计划的排制

通过图 2 可以直观地看出横切订单的理论投料量和已投料量的数值差异,从而快速掌握挂单及排产工作。

本文通过分析订单链中订单接收流程及横切 生产工艺,阐述了横切 MES 订单量的平衡算法。 在生产过程中,订单量对生产计划排制和生产组 织起着至关重要的作用。实际应用表明,本文所介绍的订单量平衡算法,结果精确,为计划员快捷直观地查看整个订单的生产情况提供了重要的依据,同时减少了带出品的产生,为生产的有序组织提供了重要保证。

[编辑:初秀兰]